Fr. 66.00

Einführung in die Symplektische Geometrie

Deutsch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

Die symplektische Geometrie ist ein derzeit sehr aktives Gebiet, auf demviele verschiedene Zweige der Mathematik zusammenwirken, insbesondere Differentialgeometrie, Differentialgleichungen, komplexe Analysis und Darstellungstheorie. Sie ist, zugleich parallel und komplementär zur Riemannschen Geometrie, Grundlage für die Beschreibung des Hamiltonformalismus in der klassischen Mechanik und von Quantisierungsprozessen in der Quantenmechanik und u.a. für das Studium gewisser Singularitäten bei der Quotientenbildung symplektischer und Kählerscher Mannigfaltigkeiten sowie für die Theorie der Siegelschen Modulfunktionen und Abelschen Varietäten.

Inhaltsverzeichnis

0 Einige Aspekte der Theoretischen Mechanik.- 0.1 Die Lagrangeschen Gleichungen.- 0.2 Die Hamiltonschen Gleichungen.- 0.3 Die Hamilton-Jacobi-Gleichung.- 0.4 Eine symplektische Umdeutung.- 0.5 Die Hamiltonschen Gleichungen via Poissonklammer.- 0.6 Zur Quantisierung.- 1 Symplektische Algebra.- 1.1 Symplektische Vektorräume.- 1.2 Symplektische Abbildungen, die symplektische Gruppe.- 1.3 Unterräume symplektischer Vektorräume.- 1.4 Komplexe Strukturen in reellen symplektischen Räumen.- 2 Symplektische Mannigfaltigkeiten.- 2.1 Symplektische Mannigfaltigkeiten und ihre Morphismen.- 2.2 Der Satz von Darboux.- 2.3 Das Kotangentialbündel.- 2.4 Kähler-Mannigfaltigkeiten.- 2.5 Koadjungierte Bahnen.- 2.6 Der komplexe projektive Raum.- 2.7 Symplektische Invarianten (Ein Ausblick).- 3 Hamiltonsche Vektorfelder und Poissonklammern.- 3.1 Hilfsmittel.- 3.2 Hamiltonsche Systeme.- 3.3 Poissonklammern.- 3.4 Kontaktmannigfaltigkeiten.- 4 Die Impulsabbildung.- 4.1 Definitionen.- 4.2 Konstruktionen und Beispiele.- 4.3 Reduktion des Phasenraumes bei Vorliegen von Symmetrie.- 5 Quantisierung.- 5.1 Homogene quadratische Polynome und die 2.- 5.2 Polynome vom Grad 1 und die Heisenberggruppe.- 5.3 Polynome vom Grad 2 und die Jacobigruppe.- 5.4 Das Theorem von Groenwald - van Hove.- 5.5 Zum allgemeinen Fall.- A Anhang.- A.1 Differenzierbare Mannigfaltigkeiten und Vektorbündel.- A.2 Liegruppen und Liealgebren.- A.3 Etwas Kohomologietheorie.- A.4 Darstellungen von Gruppen.- Symbolverzeichnis.

Über den Autor / die Autorin

Prof. Dr. Rolf Berndt ist am Mathematischen Seminar der Universität Hamburg tätig.

Zusammenfassung

Die symplektische Geometrie ist ein derzeit sehr aktives Gebiet, auf dem viele verschiedene Zweige der Mathematik zusammenwirken, insbesondere Differentialgeometrie, Differentialgleichungen, komplexe Analysis und Darstellungstheorie. Sie ist, zugleich parallel und komplementär zur Riemannschen Geometrie, Grundlage für die Beschreibung des Hamiltonformalismus in der klassischen Mechanik und von Quantisierungsprozessen in der Quantenmechanik und u.a. für das Studium gewisser Singularitäten bei der Quotientenbildung symplektischer und Kählerscher Mannigfaltigkeiten sowie für die Theorie der Siegelschen Modulfunktionen und Abelschen Varietäten.

Produktdetails

Autoren Rolf Berndt
Verlag Vieweg+Teubner
 
Sprache Deutsch
Produktform Taschenbuch
Erschienen 01.01.1998
 
EAN 9783528031022
ISBN 978-3-528-03102-2
Seiten 185
Gewicht 320 g
Illustration XII, 185 S.
Serien Advanced Lectures in Mathematics
Advanced Lectures in Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

A, geometry, Mathematics and Statistics, Vektorfelder, theoretische Mechanik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.