Fr. 159.60

Zeta Functions of Graphs - A Stroll Through the Garden

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Informationen zum Autor Audrey Terras is Professor of Mathematics at the University of California, San Diego. Klappentext Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout. Zusammenfassung This stimulating introduction to zeta (and related) functions of graphs develops the fruitful analogy between combinatorics and number theory - for example! the Riemann hypothesis for graphs - making connections with quantum chaos! random matrix theory! and computer science. Many well-chosen illustrations and exercises! both theoretical and computer-based! are included throughout. Inhaltsverzeichnis List of illustrations; Preface; Part I. A Quick Look at Various Zeta Functions: 1. Riemann's zeta function and other zetas from number theory; 2. Ihara's zeta function; 3. Selberg's zeta function; 4. Ruelle's zeta function; 5. Chaos; Part II. Ihara's Zeta Function and the Graph Theory Prime Number Theorem: 6. Ihara zeta function of a weighted graph; 7. Regular graphs, location of poles of zeta, functional equations; 8. Irregular graphs: what is the RH?; 9. Discussion of regular Ramanujan graphs; 10. The graph theory prime number theorem; Part III. Edge and Path Zeta Functions: 11. The edge zeta function; 12. Path zeta functions; Part IV. Finite Unramified Galois Coverings of Connected Graphs: 13. Finite unramified coverings and Galois groups; 14. Fundamental theorem of Galois theory; 15. Behavior of primes in coverings; 16. Frobenius automorphisms; 17. How to construct intermediate coverings using the Frobenius automorphism; 18. Artin L-functions; 19. Edge Artin L-functions; 20. Path Artin L-functions; 21. Non-isomorphic regular graphs without loops or multiedges having the same Ihara zeta function; 22. The Chebotarev Density Theorem; 23. Siegel poles; Part V. Last Look at the Garden: 24. An application to error-correcting codes; 25. Explicit formulas; 26. Again chaos; 27. Final research problems; References; Index....

Produktdetails

Autoren Audrey Terras, Audrey (University of California Terras
Verlag Cambridge University Press ELT
 
Sprache Englisch
Produktform Fester Einband
Erschienen 18.11.2010
 
EAN 9780521113670
ISBN 978-0-521-11367-0
Seiten 252
Serien Cambridge Studies in Advanced
Cambridge Studies in Advanced
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.