Fr. 69.00

A First Course in Ordinary Differential Equations - Analytical and Numerical Methods

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format-the theorem-and-proof format-the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs-with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered.
The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduatestudents. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German-Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Inhaltsverzeichnis

Chapter 1. Basic Concepts of Differential Equations.- Chapter 2. First-Order Differential Equations.- Chapter 3. Second-Order Differential Equations.- Chapter 4. Laplace Transforms.- Chapter 5. System of Linear Differential Equations.- Chapter 6. Power Series Solutions.- Chapter 7. Numerical Methods for Initial Value Problems.- Chapter 8. Shooting Methods for Linear Boundary.- Appendix A. Power Series.- Appendix B. Some elementary integration formulae.- Appendix C. Table of Laplace transforms.

Über den Autor / die Autorin

Dr. Martin Hermann ist Richter am Verwaltungsgericht in Regensburg und als Referendar-Arbeitsgemeinschaftsleiter mit den Anforderungen an die Kenntnisse im Bereich des Wasser- und Immissionsschutzrechts im Zweiten Juristischen Staatsexamen vertraut.

Zusammenfassung

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered.
The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduatestudents. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Produktdetails

Autoren Hermann, Bernd Ed. Hermann, Marti Hermann, Martin Hermann, Saravi, Masoud Saravi
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 10.02.2014
 
EAN 9788132218340
ISBN 978-81-322-1834-0
Seiten 288
Abmessung 158 mm x 243 mm x 22 mm
Gewicht 594 g
Illustration XIV, 288 p. 10 illus.
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.