Fr. 212.40

Orbifolds and Stringy Topology

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Informationen zum Autor Alejandro Adem is Professor of Mathematics at the University of British Columbia in Vancouver. Klappentext An introduction to the theory of orbifolds from a modern perspective! combining techniques from geometry! algebraic topology and algebraic geometry. One of the main motivations! and a major source of examples! is string theory! where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory! after which the book branches out to include the useful description of orbifolds provided by groupoids! as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed! a careful study of orbifold morphisms is provided! and the topic of orbifold K-theory is covered. The heart of this book! however! is a detailed description of the Chen-Ruan cohomology! which introduces a new product for orbifolds and has had significant impact in recent years. The final chapter includes explicit computations for a number of interesting examples. Zusammenfassung An introduction to the theory of orbifolds from a modern perspective! combining techniques from geometry! algebraic topology and algebraic geometry. The heart of the book is a detailed description of the Chen-Ruan cohomology! which introduces a product for orbifolds and has had significant impact. Inhaltsverzeichnis Introduction; 1. Foundations; 2. Cohomology, bundles and morphisms; 3. Orbifold K-theory; 4. Chen-Ruan cohomology; 5. Calculating Chen-Ruan cohomology; Bibliography; Index.

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.