Fr. 70.00

Evolution Equations in Scales of Banach Spaces

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. The usual functional analytic methods for studying evolution equations are formu lated within the setting of unbounded, closed operators in one Banach space. This setting is not adapted very well to the study of many pseudo differential and differential equations because these operators are naturally not given as closed, unbounded operators in one Banach space but as continuous opera tors in a scale of function spaces. Thus, applications within the setting of unbounded, closed operators require a considerable amount of additional work because one has to construct suitable closed realizations of these operators. This choice of closed realizations is technically complicated even for simple applications. The main feature of the new functional analytic approach of the book is to study the operators in scales of Banach spaces that are constructed by simple reference operators. This is a natural setting for many operators acting in scales of function spaces. The operators are only expected to respect the scale and to satisfy certain inequalities but we can avoid completely the choice of any closed realization of these operators which is of great importance in applications. We use the mapping properties of the reference operators to prove sufficient conditions for well-posedness of linear and quasilinear Cauchy problems. In the linear, time-dependent case these conditions are shown to characterize well-posedness. A similar result in the standard setting (i. e.

Inhaltsverzeichnis

1 Tools from functional analysis.- 1.1 A brief introduction into the theory of semigroups.- 1.2 Selfadjoint operators.- 1.3 Generators of analytic semigroups and their powers.- 1.4 Fractional Powers of operators of positive type.- 1.5 Complex interpolation spaces.- 1.6 Time-dependent, linear evolution equations.- 2 Well-posedness of the time-dependent linear Cauchy problem.- 2.1 Properties of well-posed linear Cauchy problems in scales of Banach spaces.- 2.2 Scales of Banach spaces generated by families of closed operators.- 2.3 Commutator estimates and scales of Banach spaces.- 2.4 Characterization of well-posedness of the Cauchy problem...- 2.5 Sufficient conditions for well-posedness of the Cauchy problem.- 3 Quasilinear Evolution Equations.- 3.1 Semilinear Evolution Equations.- 3.2 Commutator estimates and quasilinear evolution equations.- 3.3 A local existence and uniqueness result for quasilinear evolution equations.- 3.4 Regularity for quasilinear evolution equations in scales of Banach spaces.- 4 Applications to linear, time-dependent evolution equations.- 4.1 Pseudodifferential operators and weighted Sobolev spaces.- 4.2 Pseudodifferential evolution equations in scales of weighted Sobolev spaces.- 4.3 Essential selfadjointness of pseudodifferential operators.- 4.4 Evolution equations in C0(IRn) and Feller semigroups.- 4.5 Evolution equations in scales of Lq-Sobolev spaces.- 4.6 An application to a degenerate-elliptic boundary value problem.- 4.7 Evolution equations on networks.- 5 Applications to quasilinear evolution equations.- 5.1 Estimates of Nash-Moser type for differential operators.- 5.2 Quasilinear evolution equations in Sobolev spaces.- 5.3 Degenerate Navier-Stokes equations.- 5.4 The generalized Kadomtsev-Petviashvili equation.- 5.5 Quasilinear evolution equations in scales of Lq-Sobolev spaces.- 5.6 First order hyperbolic evolution equations in the C0k-scale.

Über den Autor / die Autorin

Dr. Oliver Caps, Universität Mainz

Zusammenfassung

The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem.

Vorwort

Neuer funktional-analytischer Zugang

Produktdetails

Autoren Oliver Caps
Verlag Vieweg+Teubner
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2002
 
EAN 9783519003762
ISBN 978-3-519-00376-2
Seiten 309
Gewicht 542 g
Illustration 309 p. 2 illus.
Serien Teubner-Texte zur Mathematik
Teubner-Texte zur Mathematik
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Analysis

Analysis, Mathematics and Statistics, Analysis (Mathematics), Mathematical analysis, linear Cauchy problem

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.