Mehr lesen
Informationen zum Autor Dr Jean-Luc Adam is Director of Research at Centre National de la Recherche Scientifique (CNRS) and Director of the Institut des Sciences Chimiques de Rennes, France. Dr Xianghua Zhang is a Director of Research at Centre National de la Recherche Scientifique (CNRS) -Université de Rennes 1, France.
Inhaltsverzeichnis
- Contributor contact details
- Woodhead Publishing Series in Electronic and Optical Materials
- Part I: Preparation and properties of chalcogenide glasses
- 1: Preparation of high-purity chalcogenide glasses
- Abstract:
- 1.1 Introduction
- 1.2 Preparation of vitreous chalcogenides
- 1.3 Properties of chalcogenide glasses determining their application as optical materials
- 1.4 Preparation of high-purity chalcogenide glasses
- 1.5 Preparation and characterization of chalcogenide optical fibers
- 1.6 Conclusion
- 2: Structure of chalcogenide glasses characterized by nuclear magnetic resonance (NMR) spectroscopy
- Abstract:
- 2.1 Introduction
- 2.2 The 77Se nuclear magnetic resonance (NMR) spectroscopy in chalcogenide glasses
- 2.3 Other nuclei: 125Te, 75As, 73Ge, 71Ga
- 2.4 Conclusion
- 3: Mean coordination and topological constraints in chalcogenide network glasses
- Abstract:
- 3.1 Introduction
- 3.2 Mean coordination and topological constraints: the rigidity percolation model
- 3.3 Applicability of the rigidity percolation model
- 3.4 The temperature dependence of constraints
- 3.5 Conclusion and future trends
- 4: Thermal properties of chalcogenide glasses
- Abstract:
- 4.1 Introduction
- 4.2 Differential scanning calorimetry (DSC)
- 4.3 Thermogravimetric analysis (TGA)
- 4.4 Thermomechanical analysis (TMA)
- 4.5 Viscometry
- 4.6 Thermo-optic behavior
- 4.7 Conclusion and future trends
- 4.8 Sources of further information and advice
- 5: Optical properties of chalcogenide glasses and fibers
- Abstract:
- 5.1 Introduction
- 5.2 Optical transmission theory
- 5.3 Impurity absorptions
- 5.4 Refractive index, dispersion and dn/dT
- 5.5 Transmission and laser power delivery of chalcogenide fibers
- 5.6 Current and future trends
- 5.7 Conclusion
- 6: Photo-induced phenomena in chalcogenide glasses
- Abstract:
- 6.1 Introduction
- 6.2 Scalar changes
- 6.3 Enhancement and suppression of photodarkening
- 6.4 Excitation condition dependent scalar changes
- 6.5 Vector deformations
- 6.6 Conclusion
- 7: Ionic conductivity of chalcogenide glasses
- Abstract:
- 7.1 Introduction
- 7.2 Preparation of ionic conductive chalcogenide glasses
- 7.3 Electrical and electrochemical characterisations
- 7.4 Conductivity versus composition
- 7.5 Direct current (dc) conductivity models
- 7.6 Frequency-dependent conductivity models
- 7.7 Applications
- 7.8 Conclusion
- 8: Physical ageing of chalcogenide glasses
- Abstract:
- 8.1 Introduction
- 8.2 Experimental characterization of physical ageing in glasses using thermal analysis
- 8.3 Physical ageing effects in chalcogenide glasses
- 8.4 Phenomenological description of physical ageing
- 8.5 On the origin of physical ageing in chalcogenide glasses
- 8.6 Conclusion and future trends
- 9: Deposition techniques for chalcogenide thin films
- Abstract:
- 9.1 Introduction
- 9.2 Thin-film deposition
- 9.3 Conclusion and future trends
- 9.4 Sources of further information and advice
- 9.5 Acknowledgements
- 10: Transparent chalcogenide glass-ceramics
- Abstract:
- 10.1 Introduction
- 10.2 The recent history of chalcogenide glass-ceramics
- 10.3 Synthesis of transparent chalcogenide glass-ceramics
- 10.4 Properties of glass-ceramics
- 10.5 Future trends
- 10.6 Conclusion
- Part II: Applications of chalcogenide glasses