Fr. 69.00

Limit Theorems for Large Deviations

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

"Et moi, ... si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais poin t aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H ea viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service. topology has rendered mathematical physics .. .':: 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d 'e1:re of this series.

Inhaltsverzeichnis

1. The main notions.- 2. The main lemmas.- 2.1. General lemmas on the approximation of distribution of an arbitrary random variable by the normal distribution.- 2.2. Proof of lemmas 2.1-2.4.- 3. Theorems on large deviations for the distributions of sums of independent random variables.- 3.1. Theorems on large deviations under Bernstein's condition.- 3.2. A theorem of large deviations in terms of Lyapunov's fractions.- 4. Theorems of large deviations for sums of dependent random variables.- 4.1. Estimates of the kth order centered moments of random processes with mixing.- 4.2. Estimates of mixed cumulants of random processes with mixing.- 4.3. Estimates of cumulants of sums of dependent random variables.- 4.4. Theorems and inequalities of large deviations for sums of dependent random variables.- 5. Theorems of large deviations for polynomial forms, multiple stochastic integrals and statistical estimates.- 5.1. Estimates of cumulants and theorems of large deviations for polynomial forms, polynomial Pitman estimates and U-statistics.- 5.2. Cumulants of multiple stochastic integrals and theorems of large deviations.- 5.3. Large deviations for estimates of the spectrum of a stationary sequence.- 6. Asymptotic expansions in the zones of large deviations.- 6.1. Asymptotic expansion for distribution density of an arbitrary random variable.- 6.2. Estimates for characteristic functions.- 6.3. Asymptotic expansion in the Cramer zone for distribution density of sums of independent random variables.- 6.4. Asymptotic expansions in integral theorems with large deviations.- 7. Probabilities of large deviations for random vectors.- 7.1. General lemmas on large deviations for a random vector with regular behaviour of cumulants.- 7.2. Theorems on large deviations for sums of randomvectors and quadratic forms.- Appendices.- Appendix 1. Proof of inequalities for moments and Lyapunov's fractions.- Appendix 2. Proof of the lemma on the representation of cumulants.- Appendix 3. Leonov - Shiryaev's formula.- References.

Produktdetails

Autoren Saulis, L Saulis, L. Saulis, V A Statulevicius, V. A. Statulevicius, V.A. Statulevicius
Verlag Springer Netherlands
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 11.03.2013
 
EAN 9789401055628
ISBN 978-94-0-105562-8
Seiten 232
Abmessung 155 mm x 14 mm x 233 mm
Gewicht 376 g
Illustration VIII, 232 p.
Serien Mathematics and Its Applications
Mathematics and Its Applications
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.