Fr. 189.00

Machine Learning in Document Analysis and Recognition

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With ?rst papers dating back to the 1960's, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this ?eld, while broader DAR techniques are nowadays studied and applied to other industrial and o?ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi?ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri?cation have also bene?ted much from machine learning algorithms.

Inhaltsverzeichnis

to Document Analysis and Recognition.- Structure Extraction in Printed Documents Using Neural Approaches.- Machine Learning for Reading Order Detection in Document Image Understanding.- Decision-Based Specification and Comparison of Table Recognition Algorithms.- Machine Learning for Digital Document Processing: from Layout Analysis to Metadata Extraction.- Classification and Learning Methods for Character Recognition: Advances and Remaining Problems.- Combining Classifiers with Informational Confidence.- Self-Organizing Maps for Clustering in Document Image Analysis.- Adaptive and Interactive Approaches to Document Analysis.- Cursive Character Segmentation Using Neural Network Techniques.- Multiple Hypotheses Document Analysis.- Learning Matching Score Dependencies for Classifier Combination.- Perturbation Models for Generating Synthetic Training Data in Handwriting Recognition.- Review of Classifier Combination Methods.- Machine Learning for Signature Verification.- Off-line Writer Identification and Verification Using Gaussian Mixture Models.

Zusammenfassung

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With ?rst papers dating back to the 1960’s, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this ?eld, while broader DAR techniques are nowadays studied and applied to other industrial and o?ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi?ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri?cation have also bene?ted much from machine learning algorithms.

Produktdetails

Mitarbeit Fujisawa (Herausgeber), Fujisawa (Herausgeber), Hiromichi Fujisawa (Herausgeber), Simon Marinai (Herausgeber), Simone Marinai (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 06.10.2010
 
EAN 9783642095115
ISBN 978-3-642-09511-5
Seiten 434
Abmessung 156 mm x 234 mm x 23 mm
Gewicht 675 g
Illustration XII, 434 p. 142 illus.
Serien Studies in Computational Intelligence
Studies in Computational Intelligence
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

Layout, C, Künstliche Intelligenz, machine learning, Artificial Intelligence, Learning, Neural Networks, engineering, Verification, Image Analysis, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications, handwriting recognition, self-organizing map

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.