Fr. 134.00

Rock Anisotropy and the Theory of Stress Measurements

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous.

Inhaltsverzeichnis

1: Introduction.- 2: Deformability of Anisotropic Rocks.- 2.1 Introduction.- 2.2 Constitutive Relations.- 2.3 Testing of Anisotropic Rocks.- 3: Strength of Anisotropic Rocks.- 3.1 Introduction.- 3.2 Experimental Observations.- 3.3 Analytical Models.- 4: Elastic Equilibrium of an Anisotropic Homogeneous Body Bounded Internally by a Cylindrical Surface of Arbitrary Cross Section.- 4.1 Introduction.- 4.2 Geometry and Definition of the Problem.- 4.3 Formulation of the Problem.- 4.4 Special Case of Anisotropy: A Plane of Elastic Symmetry Perpendicular to the Hole Axis.- 4.5 Plane Strain and Plane Stress Formulations.- 4.6 Particular Solution for an Infinite Cylinder with a Circular Cross Section.- 5: Elastic Equilibrium of an Anisotropic Homogeneous Body Bounded Internally by an Isotropic Inclusion of Circular Cross Section.- 5.1 Introduction.- 5.2 Geometry and Definition of the Problem.- 5.3 Formulation of Problem (A).- 5.4 Formulation of Problem (B).- 5.5 Condition of Continuity.- 5.6 Closed Form Solutions.- 5.7 Remarks.- 5.8 Numerical Examples.- 6: Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques.- 6.1 Introduction.- 6.2 In Situ Determination of Stress by Relief Techniques.- 6.3 Information Obtained from Measuring Techniques.- 6.4 General Formulas for Overcoring and Undercoring Techniques.- 6.5 General Results for Overcoring in Anisotropic Media.- 7: Summary and Conclusions.- References.- Appendix 2.1.- Appendix 4.1.- Appendix 4.2.- Appendix 4.3.- Appendix 4.4.- Appendix 4.5.- Appendix 4.6.- Appendix 4.7.- Appendix 4.8.- Appendix 5.1.- Appendix 5.2.- Appendix 5.3.- Appendix 5.4.- Appendix 6.1.- Appendix 6.2: Program Berni 1.- Appendix 6.3: Program Berni 2.- Appendix 6.4: Program Berni 3.- Appendix 6.5: Program listings.

Produktdetails

Autoren Bernard Amadei
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 16.11.2012
 
EAN 9783540123880
ISBN 978-3-540-12388-0
Seiten 482
Abmessung 170 mm x 248 mm x 28 mm
Gewicht 853 g
Illustration XVIII, 482 p.
Serien Lecture Notes in Engineering
Lecture Notes in Engineering
Thema Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.