Fr. 134.00

Topics in the Calculus of Variations

Englisch · Taschenbuch

Versand in der Regel in 1 bis 2 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This report grew out of a series of lectures given at the East China Institute of Technology, Nanjing, during September 1992. The purpose of this book is to make beginning research students familiar with some problems in varia tional calculus which have been chosen following my personal taste but with the attempt to illustrate two basic principles in the calculus of variations which are the fundamental question of existence of (generalized) solutions and closely related the question of regularity. Chapter one is devoted to the study of variational integrals for vectorvalued functions which began with the pioneering work of Morrey [68] in the thirties. We concentrate on problems where also nonlinear side conditions are imposed on the classes of admissi ble comparison functions. As special cases we include mappings whose range is forced to lie in some Riemannian manifold possibly with boundary or functions whose Jacobian is required to be strictly positive. The variational integrals under consideration are typically nonquadratic with respect to the gradient which immediately leads us to classes of degenerate elliptic systems. Let us mention some of the most important applications: - p-harmonic maps between Riemannian manifolds - systems of degenerate variational inequalities - model problems in nonlinear elasticity. Usually by working in appropriate Sobolev spaces, the existence of gener alized solutions is rather easy to establish (see [7]) but leads to apriori dis continuous functions.

Inhaltsverzeichnis

1 Degenerate Variational Integrals with Nonlinear Side Conditions, p-harmonic Maps and Related Topics.- 1.1 Introduction, Notations and Results for Minimizers.- 1.2 Linearisation of the Minimum Property, Extension of Maps.- 1.3 Proofs of the Basic Theorems.- 1.4 A Survey on p-Harmonic Maps.- 1.5 Variational Inequalities and Asymptotically Regular Integrands.- 1.6 Approximations for some Model Problems in Nonlinear Elasticity.- 2 Manifolds of Prescribed Mean Curvature in the Setting of Geometric Measure Theory.- 2.1 The Mean Curvature Problem.- 2.2 Some Facts from Geometric Measure Theory.- 2.3 A First Approach to the Mean Curvature Problem.- 2.4 General Existence Theorems, Applications to Isoperimetric Problems.- 2.5 Tangent Cones, Small Solutions, Closed Hypersurfaces.

Über den Autor / die Autorin










Prof. Dr. Martin Fuchs ist an der Universität des Saarlandes im Bereich Variationsrechnung und partielle Differentialgleichungen mit Bezügen zur mathematischen Physik und Differentialgeometrie tätig.

Produktdetails

Autoren Martin Fuchs
Verlag Vieweg+Teubner
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.1994
 
EAN 9783528066239
ISBN 978-3-528-06623-9
Seiten 148
Abmessung 164 mm x 243 mm x 10 mm
Gewicht 274 g
Illustration VII, 148 p.
Serien Advanced Lectures in Mathematics
Advanced Lectures in Mathematics
Thema Naturwissenschaften, Medizin, Informatik, Technik > Technik > Sonstiges

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.