Mehr lesen
Erstes Kapitel. Einführende Betrachtungen über Algorithmen.- § 1. Der Begriff des Algorithmus.- § 2. Die grundlegenden Begriffe der Theorie des Konstruktiven.- § 3. Turingmaschinen als Präzisierung des Begriffs eines Algorithmus.- § 4. Historische Bemerkungen.- Zweites Kapitel. Turingmaschinen.- § 5. Definition der Turingmaschinen.- § 6. Präzisierung konstruktiver Begriffe mittels Turingmaschinen. Beispiele.- § 7. Zusammensetzung von Turingmaschinen.- § 8. Spezielle Turingmaschinen.- § 9. Beispiele für Turing-Berechenbarkeit und Turing-Entscheidbarkeit.- Drittes Kapitel. µ-rekursive Funktionen.- § 10. Primitiv-rekursive Funktionen.- §11. Primitiv-rekursive Prädikate.- § 12. Der µ-Operator.- § 13. Beispiel einer berechenbaren Funktion, die nicht primitiv-rekursiv ist.- § 14. µ-rekursive Funktionen und Prädikate.- Viertes Kapitel. Die Äquivalenz von Turing-Berechenbarkeit und µ-Rekursivität.- §15. Übersicht. Normierte Turing-Berechenbarkeit.- § 16. Die Turing-Berechenbarkeit der µ-rekursiven Funktionen.- §17. Gödelisierung von Turingmaschinen.- § 18. Die µ-Rekursivität der Turing-berechenbaren Funktionen. Die Kleenesche Normalform.- Fünftes Kapitel. Rekursive Funktionen.- §19. Definition der rekursiven Funktionen.- § 20. Die Rekursivität der µ-rekursiven Funktionen.- §21. Die µ-Rekursivität der rekursiven Funktionen.- Sechstes Kapitel. Unentscheidbare Prädikate.- § 22. Einfache unentscheidbare Prädikate.- § 23. Die Unlösbarkeit des Wortproblems für Semi-Thue-Systeme und Thue-Systeme.- §24. Die Prädikatenlogik.- § 25. Die Unentscheidbarkeit der Prädikatenlogik.- § 26. Die Unvollständigkeit der Prädikatenlogik der zweiten Stufe.- § 27. Die Unentscheidbarkeit und die Unvoll ständigkeit der Arithmetik.- SiebentesKapitel. Verschiedenes.- §28. Aufzählbare Prädikate.- § 29. Arithmetische Prädikate.- § 30. Universelle Turingmaschinen.- §31. ?-K-Definierbarkeit.- § 32. Die Minimallogik von Fitch.- § 33. Aufzählbare Mengen über beliebigen Alphabeten. Chomsky-Sprachen.- § 34. Das Korrespondenzproblem von Post.- § 35. Weitere Präzisierungen des Begriffs des Algorithmus.- § 36. Rekursive Analysis.- Namen- und Sachverzeichnis.
Inhaltsverzeichnis
Erstes Kapitel. Einführende Betrachtungen über Algorithmen.-
1. Der Begriff des Algorithmus.-
2. Die grundlegenden Begriffe der Theorie des Konstruktiven.-
3. Turingmaschinen als Präzisierung des Begriffs eines Algorithmus.-
4. Historische Bemerkungen.- Zweites Kapitel. Turingmaschinen.-
5. Definition der Turingmaschinen.-
6. Präzisierung konstruktiver Begriffe mittels Turingmaschinen. Beispiele.-
7. Zusammensetzung von Turingmaschinen.-
8. Spezielle Turingmaschinen.-
9. Beispiele für Turing-Berechenbarkeit und Turing-Entscheidbarkeit.- Drittes Kapitel. µ-rekursive Funktionen.-
10. Primitiv-rekursive Funktionen.-
11. Primitiv-rekursive Prädikate.-
12. Der µ-Operator.-
13. Beispiel einer berechenbaren Funktion, die nicht primitiv-rekursiv ist.-
14. µ-rekursive Funktionen und Prädikate.- Viertes Kapitel. Die Äquivalenz von Turing-Berechenbarkeit und µ-Rekursivität.-
15. Übersicht. Normierte Turing-Berechenbarkeit.-
16. Die Turing-Berechenbarkeit der µ-rekursiven Funktionen.-
17. Gödelisierung von Turingmaschinen.-
18. Die µ-Rekursivität der Turing-berechenbaren Funktionen. Die Kleenesche Normalform.- Fünftes Kapitel. Rekursive Funktionen.-
19. Definition der rekursiven Funktionen.-
20. Die Rekursivität der µ-rekursiven Funktionen.-
21. Die µ-Rekursivität der rekursiven Funktionen.- Sechstes Kapitel. Unentscheidbare Prädikate.-
22. Einfache unentscheidbare Prädikate.-
23. Die Unlösbarkeit des Wortproblems für Semi-Thue-Systeme und Thue-Systeme.-
24. Die Prädikatenlogik.-
25. Die Unentscheidbarkeit der Prädikatenlogik.-
26. Die Unvollständigkeit der Prädikatenlogik der zweiten Stufe.-
27. Die Unentscheidbarkeit und die Unvoll ständigkeit der Arithmetik.- SiebentesKapitel. Verschiedenes.-
28. Aufzählbare Prädikate.-
29. Arithmetische Prädikate.-
30. Universelle Turingmaschinen.-
31. ?-K-Definierbarkeit.-
32. Die Minimallogik von Fitch.-
33. Aufzählbare Mengen über beliebigen Alphabeten. Chomsky-Sprachen.-
34. Das Korrespondenzproblem von Post.-
35. Weitere Präzisierungen des Begriffs des Algorithmus.-
36. Rekursive Analysis.- Namen- und Sachverzeichnis.