Fr. 169.00

Lectures on Algebraic Geometry I - Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own.
In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
For this second edition the text was completely revised and corrected. The author also added a short section on moduli of elliptic curves with N-level structures. This new paragraph anticipates some of the techniques of volume II.

Inhaltsverzeichnis

Categories, Products, Projective and Inductive Limits - Basic Concepts of Homological Algebra - Sheaves - Cohomology of Sheaves - Compact Riemann surfaces and Abelian Varieties

Über den Autor / die Autorin

Prof. Dr. Günter Harder, Max-Planck-Institute for Mathematics, Bonn

Zusammenfassung

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own.
In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
For this second edition the text was completely revised and corrected. The author also added a short section on moduli of elliptic curves with N-level structures. This new paragraph anticipates some of the techniques of volume II.

Vorwort

Abel, Jacobi and Riemann from todays point of view.

Zusatztext

"No doubt, the great lucidity of exposition, the masterly style of writing, the broad spectrum of topics touched upon, and the purposeful, very special disposition of the subject matter make this text, together with its expected companion book(s), a very particular and outstanding enrichment of the existing textbook literature in algebraic geometry and its intimately related areas."

Zentralblatt MATH Zbl 1129.14001

Bericht

"No doubt, the great lucidity of exposition, the masterly style of writing, the broad spectrum of topics touched upon, and the purposeful, very special disposition of the subject matter make this text, together with its expected companion book(s), a very particular and outstanding enrichment of the existing textbook literature in algebraic geometry and its intimately related areas." Zentralblatt MATH Zbl 1129.14001

Produktdetails

Autoren Günter Harder
Mitarbeit Kla Diederich (Herausgeber), Klas Diederich (Herausgeber), Klas Diederich (Herausgeber der Reihe)
Verlag Vieweg+Teubner
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 31.12.2014
 
EAN 9783834819925
ISBN 978-3-8348-1992-5
Seiten 301
Abmessung 167 mm x 240 mm x 17 mm
Gewicht 532 g
Illustration XIII, 301 p.
Serien Aspects of Mathematics
Aspects of Mathematics
Themen Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Geometrie

Algebra, C, geometry, Mathematics and Statistics, Kommutative Algebra, Kohomologie, Komplexe Analysis

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.