Fr. 286.00

Divergence Theorem and Sets of Finite Perimeter

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen

Zusatztext "The intentions of the author connected with the entire monograph are best illustrated by a quotation from the introduction: 'We divide the problem into three parts. (1) Extending the family of vector fields for which the divergence theorem holds on simple sets. (2) Extending the family of sets for which the divergence theorem holds for Lipschitz vector fields. (3) Proving the divergence theorem when the vector fields and sets are extended simultaneously.' ? The last chapter ? [contain] results published for the first time in this century. The author starts these considerations with a nice presentation of the background of these problems." -Ryszard J. Pawlak! Mathematical Reviews ! April 2013 Informationen zum Autor Pfeffer! Washek F. "The intentions of the author connected with the entire monograph are best illustrated by a quotation from the introduction: 'We divide the problem into three parts. (1) Extending the family of vector fields for which the divergence theorem holds on simple sets. (2) Extending the family of sets for which the divergence theorem holds for Lipschitz vector fields. (3) Proving the divergence theorem when the vector fields and sets are extended simultaneously.' ... The last chapter ... [contain] results published for the first time in this century. The author starts these considerations with a nice presentation of the background of these problems." -Ryszard J. Pawlak, Mathematical Reviews, April 2013 Zusammenfassung This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration — no generalized Riemann integrals of Henstock–Kurzweil variety are involved. In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy–Riemann, Laplace, and minimal surface equations. The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev’s spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation. The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field. Inhaltsverzeichnis DYADIC FIGURES: Preliminaries. Divergence Theorem for Dyadic Figures. Removable Singularities. SETS OF FINITE PERIMETER: Perimeter. BV Functions. Locally BV Sets. THE DIVERGENCE THEOREM: Bounded Vector Fields. Unbounded Vector Fields. Mean Divergence. Charges. The Divergence Equation. ...

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.