Fr. 217.00

Progress in Commutative Algebra. Vol.2 - Closures, Finiteness and Factorization

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry).
This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure.
Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.

Über den Autor / die Autorin










Christopher Francisco, Oklahoma State University, Stillwater, Oklahoma, USA; Lee C. Klingler, Florida Atlantic University, Boca Raton, Florida, USA; Sean M. Sather-Wagstaff, North Dakota State University, Fargo, North Dakota, USA; Janet Vassilev, University of New Mexico, Albuquerque, New Mexico, USA.

Produktdetails

Mitarbeit Le C Klingler (Herausgeber), Lee C Klingler (Herausgeber), Christopher Francisco (Herausgeber), Lee Klingler (Herausgeber), Lee C. Klingler (Herausgeber), Sean M Sather-Wagstaff et al (Herausgeber), Sean Sather-Wagstaff (Herausgeber), Sean M. Sather-Wagstaff (Herausgeber), Janet C. Vassilev (Herausgeber)
Verlag De Gruyter
 
Sprache Englisch
Produktform Fester Einband
Erschienen 01.06.2012
 
EAN 9783110278590
ISBN 978-3-11-027859-0
Seiten 315
Abmessung 176 mm x 22 mm x 244 mm
Gewicht 694 g
Serien de Gruyter Proceedings in Mathematics
De Gruyter Proceedings in Mathematics
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Arithmetik, Algebra

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.