Fr. 158.00

Random Perturbations of Dynamical Systems

Englisch · Fester Einband

Versand in der Regel in 2 bis 3 Wochen (Titel wird auf Bestellung gedruckt)

Beschreibung

Mehr lesen

Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been "rediscovered" in applied papers.

In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained.

Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.

Inhaltsverzeichnis

1.Random Perturbations.- 2.Small Random Perturbations on a Finite Time Interval.- 3.Action Functional.- 4.Gaussian Perturbations of Dynamical Systems. Neighborhood of an Equilibrium Point.- 5.Perturbations Leading to Markov Processes.- 6.Markov Perturbations on Large Time Intervals.- 7.The Averaging Principle. Fluctuations in Dynamical Systems with Averaging.- 8.Random Perturbations of Hamiltonian Systems.- 9. The Multidimensional Case.- 10.Stability Under Random Perturbations.- 11.Sharpenings and Generalizations.- References.- Index.

Zusammenfassung

Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been “rediscovered” in applied papers.
 
In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained.
 
Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.

Zusatztext

From the reviews of the third edition:
“The celebrated work of Ventsel and Freidlin has proved to be a major contribution in this development, with their phenomenal text Random Perturbations of Dynamical Systems, now in its third edition, playing a unique role. … The book under review has evolved since its first English edition was published in 1984, a translation from the Russian original of 1979. … it will attract an ever growing population of applied mathematicians to the fascinating new frontier of stochastic dynamics.” (Hong Qian and Hao Ge, SIAM Review, Vol. 55 (3), 2013)

Bericht

From the reviews of the third edition:
"The celebrated work of Ventsel and Freidlin has proved to be a major contribution in this development, with their phenomenal text Random Perturbations of Dynamical Systems, now in its third edition, playing a unique role. ... The book under review has evolved since its first English edition was published in 1984, a translation from the Russian original of 1979. ... it will attract an ever growing population of applied mathematicians to the fascinating new frontier of stochastic dynamics." (Hong Qian and Hao Ge, SIAM Review, Vol. 55 (3), 2013)

Produktdetails

Autoren M. I. Freidlin, Mark Freidlin, Mark I Freidlin, Mark I. Freidlin, A. D. Wentzell, Alexander Wentzell, Alexander D Wentzell, Alexander D. Wentzell
Mitarbeit J. Szücs (Übersetzung), Joseph Szücs (Übersetzung)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 04.11.2011
 
EAN 9783642258466
ISBN 978-3-642-25846-6
Seiten 460
Abmessung 161 mm x 243 mm x 32 mm
Gewicht 882 g
Illustration XXVIII, 460 p.
Serien Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Thema Naturwissenschaften, Medizin, Informatik, Technik > Mathematik > Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.