Mehr lesen
The creation of intelligent robots is surely one of the most exciting and ch- lenginggoals of Arti?cial Intelligence. A robot is, ?rst of all, nothing but an inanimate machine with motors and sensors. In order to bring life to it, the machine needs to be programmed so as to make active use of its hardware c- ponents. This turns a machine into an autonomous robot. Since about the mid nineties of the past century, robot programming has made impressive progress. State-of-the-art robots are able to orient themselves and move around freely in indoor environments or negotiate di?cult outdoor terrains, they can use stereo vision to recognize objects, and they are capable of simple object manipulation with the help of arti?cial extremities. At a time where robots perform these tasks more and more reliably,weare ready to pursue the next big step, which is to turn autonomous machines into reasoning robots.Areasoning robot exhibits higher cognitive capabilities like following complex and long-term strategies, making rational decisions on a high level, drawing logical conclusions from sensor information acquired over time, devising suitable plans, and reacting sensibly in unexpected situations. All of these capabilities are characteristics of human-like intelligence and ultimately distinguish truly intelligent robots from mere autonomous machines.
Inhaltsverzeichnis
Special Fluent Calculus.- Special FLUX.- General Fluent Calculus.- General FLUX.- Knowledge Programming.- Planning.- Nondeterminism.- Imprecision*.- Indirect Effects: Ramification Problem*.- Troubleshooting: Qualification Problem.- Robotics.
Über den Autor / die Autorin
Michael Thielscher is a Professor and head of the Computational Logic Group at Dresden University in Germany since 1997. He received his PhD in Computer Science from Darmstadt University of Technology, Germany. His research is mainly in Knowledge Representation, Cognitive Robotics, Commonsense Reasoning, Game Playing, and Constraint Logic Programming. He has developed the action programming language and system FLUX and has published numerous papers and two books on knowledge representation for actions, on comparisons of different action languages, and on implementations of action programming systems. In 1998, his Habilitation thesis was honored with the award for research excellence by the alumni of Darmstadt University of Technology. He co-authored the program FLUXPLAYER, which in 2006 was crowned the world champion at the Second General Game Playing Competition in Boston.
Zusammenfassung
The creation of intelligent robots is surely one of the most exciting and ch- lenginggoals of Arti?cial Intelligence. A robot is, ?rst of all, nothing but an inanimate machine with motors and sensors. In order to bring life to it, the machine needs to be programmed so as to make active use of its hardware c- ponents. This turns a machine into an autonomous robot. Since about the mid nineties of the past century, robot programming has made impressive progress. State-of-the-art robots are able to orient themselves and move around freely in indoor environments or negotiate di?cult outdoor terrains, they can use stereo vision to recognize objects, and they are capable of simple object manipulation with the help of arti?cial extremities. At a time where robots perform these tasks more and more reliably,weare ready to pursue the next big step, which is to turn autonomous machines into reasoning robots.Areasoning robot exhibits higher cognitive capabilities like following complex and long-term strategies, making rational decisions on a high level, drawing logical conclusions from sensor information acquired over time, devising suitable plans, and reacting sensibly in unexpected situations. All of these capabilities are characteristics of human-like intelligence and ultimately distinguish truly intelligent robots from mere autonomous machines.
Zusatztext
From the reviews:
"This book presents the ‘fluent calculus’ as one possible approach to solve the frame problem in artificial intelligence. … The book is very understandable and recommendable for anybody who wants to solve AI problems by means of predicate logics and logic programming. It shows that this approach is more and more applicable to the solution of real-world problems. It will be an excellent textbook for appropriate AI or robotics courses and very appropriate for graduate students." (Christian Posthoff, Zentralblatt MATH, Vol. 1092 (18), 2006)
Bericht
From the reviews:
"This book presents the 'fluent calculus' as one possible approach to solve the frame problem in artificial intelligence. ... The book is very understandable and recommendable for anybody who wants to solve AI problems by means of predicate logics and logic programming. It shows that this approach is more and more applicable to the solution of real-world problems. It will be an excellent textbook for appropriate AI or robotics courses and very appropriate for graduate students." (Christian Posthoff, Zentralblatt MATH, Vol. 1092 (18), 2006)