Fr. 179.00

Structure and Geometry of Lie Groups

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity.
This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.

Inhaltsverzeichnis

Preface.- 1 Introduction.- Part I Matrix Groups.- 2 Concrete Matrix Groups.- 3 The Matrix Exponential Function.- 4 Linear Lie Groups.- Part II Lie Algebras.- 5 Elementary Structure Theory of Lie Algebras.- 6 Root Decomposition.- 7 Representation Theory of Lie Algebras.- Part III Manifolds and Lie Groups.- 8 Smooth Manifolds.- 9 Basic Lie Theory.- 10 Smooth Actions of Lie Groups.- Part IV Structure Theory of Lie Groups.- 11 Normal Subgroups, Nilpotemt and Solvable Lie Groups.- 12 Compact Lie Groups.- 13 Semisimple Lie Groups.- 14 General Structure Theory.- 15 Complex Lie Groups.- 16 Linearity of Lie Groups.- 17 Classical Lie Groups.- 18 Nonconnected Lie Groups.- Part V Appendices.- A Basic Covering Theory.- B Some Multilinear Algebra.- C Some Functional Analysis.- D Hints to Exercises.- References.- Index.

Über den Autor / die Autorin

Joachim Hilgert forscht und lehrt am Institut für Mathematik der Universität Paderborn.

Zusammenfassung

This textbook is ideal for advanced undergraduate or first-graduate students who want to learn the fundamentals of Lie groups. It covers the principles behind the theory and includes numerous applications and examples. The author's approach is unique - where some texts develop Lie group theory from matrix groups, differential geometry plays a more prominent role in this book. Most students will not have a background in differential geometry and for that reason, the authors have included an introduction to the topic that begins at the ground level. Each section engages the reader in an in-depth instruction on some of the most important, yet basic principles of Lie theory. In addition to these core topics, the authors include more recent research.
Students gain the ability to work through problems following the basic principles of Lie theory, understand references to Lie theoretic concepts, and easily move on to more advanced topics.

Zusatztext

From the reviews:
“The monograph under review is an introduction to the structure theory and geometry of Lie groups accessible both to a broad range of mathematicians and to graduate students. … The book consists of twenty one chapters divided into five parts. It starts with an introduction which presents the structure of the book, contains various teaching suggestions and introduces some fundamental notation.” (Volodymyr Mazorchuk, Zentralblatt MATH, Vol. 1229, 2012)

Bericht

From the reviews:
"The monograph under review is an introduction to the structure theory and geometry of Lie groups accessible both to a broad range of mathematicians and to graduate students. ... The book consists of twenty one chapters divided into five parts. It starts with an introduction which presents the structure of the book, contains various teaching suggestions and introduces some fundamental notation." (Volodymyr Mazorchuk, Zentralblatt MATH, Vol. 1229, 2012)

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.