Fr. 230.40

Extreme Statistics in Nanoscale Memory Design

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5-6s (0.

Sommario

Extreme Statistics in Memories.- Statistical Nano CMOS Variability and Its Impact on SRAM.- Importance Sampling-Based Estimation: Applications to Memory Design.- Direct SRAM Operation Margin Computation with Random Skews of Device Characteristics.- Yield Estimation by Computing Probabilistic Hypervolumes.- Most Probable Point-Based Methods.- Extreme Value Theory: Application to Memory Statistics.

Riassunto

Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.

Dettagli sul prodotto

Con la collaborazione di A Rutenbar (Editore), A Rutenbar (Editore), Rob A Rutenbar (Editore), Rob A. Rutenbar (Editore), Amit Singhee (Editore), Amith Singhee (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 13.10.2010
 
EAN 9781441966056
ISBN 978-1-4419-6605-6
Pagine 246
Peso 530 g
Illustrazioni X, 246 p.
Serie Series on Integrated Circuits and Systems
Integrated Circuits and Systems
Series on Integrated Circuits and Systems
Integrated Circuits and Systems
Integrated Circuits and System
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Elettronica, elettrotecnica, telecomunicazioni

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.