Fr. 164.40

Cohomological and Geometric Approaches to Rationality Problems - New Perspectives

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry.
This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties.
This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems.
Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov

Sommario

The Rationality of Certain Moduli Spaces of Curves of Genus 3.- The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo.- Unramified Cohomology of Finite Groups of Lie Type.- Sextic Double Solids.- Moduli Stacks of Vector Bundles on Curves and the King#x2013;Schofield Rationality Proof.- Noether#x2019;s Problem for Some -Groups.- Generalized Homological Mirror Symmetry and Rationality Questions.- The Bogomolov Multiplier of Finite Simple Groups.- Derived Categories of Cubic Fourfolds.- Fields of Invariants of Finite Linear Groups.- The Rationality Problem and Birational Rigidity.

Riassunto

Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry.

This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties.

This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems.

Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov

Dettagli sul prodotto

Con la collaborazione di Fedo Bogomolov (Editore), Fedor Bogomolov (Editore), Tschinkel (Editore), Tschinkel (Editore), Yuri Tschinkel (Editore)
Editore Springer, Basel
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 14.01.2010
 
EAN 9780817649333
ISBN 978-0-8176-4933-3
Pagine 314
Dimensioni 161 mm x 23 mm x 243 mm
Peso 662 g
Illustrazioni X, 314 p. 47 illus.
Serie Progress in Mathematics
Progress in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.