Fr. 160.90

Around the Research of Vladimir Maz'ya I - Function Spaces

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.

Sommario

Hardy Inequalities for Nonconvex Domains.- Distributions with Slow Tails and Ergodicity of Markov Semigroups in Infinite Dimensions.- On Some Aspects of the Theory of Orlicz#x2013;Sobolev Spaces.- Mellin Analysis of Weighted Sobolev Spaces with Nonhomogeneous Norms on Cones.- Optimal Hardy#x2014;Sobolev#x2014;Maz#x2019;ya Inequalities with Multiple Interior Singularities.- Sharp Fractional Hardy Inequalities in Half-Spaces.- Collapsing Riemannian Metrics to Sub-Riemannian and the Geometry of Hypersurfaces in Carnot Groups.- Sobolev Homeomorphisms and Composition Operators.- Extended Dirichlet Spaces.- Characterizations for the Hardy Inequality.- Geometric Properties of Planar -Extension Domains.- On a New Characterization of Besov Spaces with Negative Exponents.- Isoperimetric Hardy Type and Poincar#x00E9; Inequalities on Metric Spaces.- Gauge Functions and Sobolev Inequalities on Fluctuating Domains.- A Converse to the Maz#x2019;ya Inequality for Capacities under Curvature Lower Bound.- Pseudo-Poincar#x00E9; Inequalities and Applications to Sobolev Inequalities.- The -Faber-Krahn Inequality Noted.

Riassunto

The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.

Dettagli sul prodotto

Con la collaborazione di Ar Laptev (Editore), Ari Laptev (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 22.01.2010
 
EAN 9781441913401
ISBN 978-1-4419-1340-1
Pagine 398
Dimensioni 180 mm x 28 mm x 243 mm
Peso 758 g
Illustrazioni XXII, 398 p. 3 illus.
Serie International Mathematical Series
Topics Around the Research of V. Maz'ya I - III
International Mathematical Series
International Mathematical
Topics Around the Research of V. Maz'ya I - III
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.