Fr. 172.90

Dynamic Linear Models with R

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms.
The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online.
No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Sommario

Introduction: basic notions about Bayesian inference.- Dynamic linear models.- Model specification.- Models with unknown parameters.- Sequential Monte Carlo methods.

Riassunto

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms.
The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online.
No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Testo aggiuntivo

the Use R! series for providing a valuable collection of books for a fantastic open-source software.”  (American Statistician, August 2010, Vol. 64, No. 3)

Relazione

the Use R! series for providing a valuable collection of books for a fantastic open-source software." (American Statistician, August 2010, Vol. 64, No. 3)

Dettagli sul prodotto

Autori Patriz Campagnoli, Patrizia Campagnoli, Giovann Petris, Giovanni Petris, Soni Petrone, Sonia Petrone
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 18.06.2009
 
EAN 9780387772370
ISBN 978-0-387-77237-0
Pagine 252
Dimensioni 156 mm x 235 mm x 16 mm
Peso 436 g
Illustrazioni XIII, 252 p.
Serie Use R!
Use R!
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.