Fr. 55.50

Soliton Equations and Hamilton Systems

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.

Sommario

Integrable systems generated by linear differential nth order operators; Hamiltonian structures; Hamiltonian structures of the KdV-hierarchies; the Kupershmidt-Wilson theorem; the KP-hierarchy; Hamiltonian structure of the KP-hierarchy; Baker function, tau-function; Grassmannian, tau-function and Baker function after Segal and Wilson. Algebraic-geometrical Krichever's solutions; matrix first-order operators; KdV-hierarchies as reductions of matrix hierarchies; stationary equations; stationary equations of the KdV-hierarchy in the narrow sense (n=2); stationary equations of the matrix hierarchy; stationary equations of the KdV-hierarchies; matrix differential operators polynomially depending on a parameter; multi-time Lagrangian and Hamiltonian formalism; further examples and applications.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.