Ulteriori informazioni
Informationen zum Autor Soheil Mohammadi is Associate Professor in the School of Civil Engineering at the University of Tehran. He has published in a wide range of journals, addressing theoretical aspects as well as practical applications, and has written one previous book: Discontinuum Mechanics using Finite and Discrete Elements 2003 WIT Press. He gained his PhD in Civil Engineering (Computational Mechanics) from the University of Wales Swansea. Klappentext This important textbook provides an introduction to the concepts of the newly developed extended finite element method (XFEM) for fracture analysis of structures, as well as for other related engineering applications. One of the main advantages of the method is that it avoids any need for remeshing or geometric crack modelling in numerical simulation, while generating discontinuous fields along a crack and around its tip. The second major advantage of the method is that by a small increase in number of degrees of freedom, far more accurate solutions can be obtained. The method has recently been extended to nonlinear materials and other disciplines such as modelling contact and interface, simulation of inclusions and holes, moving and changing phase problems, and even to multiscale analyses. The book is self contained, with summaries of both classical and modern computational techniques. The main chapters include a comprehensive range of numerical examples describing various features of XFEM. Zusammenfassung Likely to be the first textbook to be published on XFEM Concise! without completeness being compromised Emphasis on practical applications Comprehensive numerical examples in each chapter. Inhaltsverzeichnis Dedication . Preface . Nomenclature . Chapter 1 Introduction . 1.1 ANALYSIS OF STRUCTURES. 1.2 ANALYSIS OF DISCONTINUITIES. 1.3 FRACTURE MECHANICS. 1.4 CRACK MODELLING. 1.4.1 Local and non-local models. 1.4.2 Smeared crack model. 1.4.3 Discrete inter-element crack. 1.4.4 Discrete cracked element. 1.4.5 Singular elements. 1.4.6 Enriched elements. 1.5 ALTERNATIVE TECHNIQUES. 1.6 A REVIEW OF XFEM APPLICATIONS. 1.6.1 General aspects of XFEM. 1.6.2 Localisation and fracture. 1.6.3 Composites. 1.6.4 Contact. 1.6.5 Dynamics. 1.6.6 Large deformation/shells. 1.6.7 Multiscale. 1.6.8 Multiphase/solidification. 1.7 SCOPE OF THE BOOK. Chapter 2 Fracture Mechanics, a Review . 2.1 INTRODUCTION. 2.2 BASICS OF ELASTICITY. 2.2.1 Stress-strain relations. 2.2.2 Airy stress function. 2.2.3 Complex stress functions. 2.3 BASICS OF LEFM. 2.3.1 Fracture mechanics. 2.3.2 Circular hole. 2.3.3 Elliptical hole. 2.3.4 Westergaard analysis of a sharp crack. 2.4 STRESS INTENSITY FACTOR, K . 2.4.1 Definition of the stress intensity factor. 2.4.2 Examples of stress intensity factors for LEFM. 2.4.3 Griffith theories of strength and energy. 2.4.4 Brittle material. 2.4.5 Quasi-brittle material. 2.4.6 Crack stability. 2.4.7 Fixed grip versus fixed load. 2.4.8 Mixed mode crack propagation. 2.5 SOLUTION PROCEDURES FOR K AND G . 2.5.1 Displacement extrapolation/correlation method. 2.5.2 Mode I energy release rate. 2.5.3 Mode I stiffness derivative/virtual crack model. 2.5.4 Two virtual crack extensions for mixed mode cases. 2.5.5 Single virtual crack extension based on displacement decomposition. 2.5.6 Quarter point singular elements. 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM). 2.6.1 Plastic zone. 2.6.2 Crack tip opening displacements (CTOD). 2.6.3 J integral. <...