Fr. 49.50

Processus Aleatoires a Deux Indices - Colloque E.N.S.T. - C.N.E.T., Paris 1980

Francese, Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Sommario

Theorie elementaire des processus a deux indices.- Limites "quadrantales" des martingales.- Convergence and regularity of strong submartingales.- Discontinuites des processus croissants et martingales a variation integrable.- Sur les discontinuites d'un processus cad-lag a deux indices.- Regularite des martingales a deux indices et inegalites de normes.- Inegalites de Burkholder pour martingales indexees par ? × ?.- Martingales a variation independante du chemin.- Some remarks on integration with respect to weak martingales.- On the decomposition and integration of two-parameter stochastic processes.- Optional increasing paths.- The conditional independence property in filtrations associated to stopping lines.- Identification et estimation de semi-martingales representables par rapport a un brownien a un indice double.- Stochastic calculus for a two parameter jump process.- Une propriete markovienne et diffusions associees.

Dettagli sul prodotto

Con la collaborazione di H. Korezlioglu (Editore), G Mazziotto (Editore), G. Mazziotto (Editore), J Szpirglas (Editore), J. Szpirglas (Editore)
Editore Springer, Berlin
 
Lingue Francese, Inglese
Formato Tascabile
Pubblicazione 26.06.2009
 
EAN 9783540108320
ISBN 978-3-540-10832-0
Pagine 282
Peso 603 g
Illustrazioni VI, 282 p.
Serie Lecture Notes in Mathematics
Lecture Notes in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.