Fr. 69.00

Knowledge Representation and Organization in Machine Learning

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Machine learning has become a rapidly growing field of Artificial Intelligence. Since the First International Workshop on Machine Learning in 1980, the number of scientists working in the field has been increasing steadily. This situation allows for specialization within the field. There are two types of specialization: on subfields or, orthogonal to them, on special subjects of interest. This book follows the thematic orientation. It contains research papers, each of which throws light upon the relation between knowledge representation, knowledge acquisition and machine learning from a different angle. Building up appropriate representations is considered to be the main concern of knowledge acquisition for knowledge-based systems throughout the book. Here machine learning is presented as a tool for building up such representations. But machine learning itself also states new representational problems. This book gives an easy-to-understand insight into a new field with its problems and the solutions it offers. Thus it will be of good use to both experts and newcomers to the subject.

Sommario

Explanation: A source of guidance for knowledge representation.- (Re)presentation issues in second generation expert systems.- Some aspects of learning and reorganization in an analogical representation.- A knowledge-intensive learning system for document retrieval.- Constructing expert systems as building mental models or toward a cognitive ontology for expert systems.- Sloppy modeling.- The central role of explanations in disciple.- An inference engine for representing multiple theories.- The acquisition of model-knowledge for a model-driven machine learning approach.- Using attribute dependencies for rule learning.- Learning disjunctive concepts.- The use of analogy in incremental SBL.- Knowledge base refinement using apprenticeship learning techniques.- Creating high level knowledge structures from simple elements.- Demand-driven concept formation.

Dettagli sul prodotto

Con la collaborazione di Katharin Morik (Editore), Katharina Morik (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 26.06.2009
 
EAN 9783540507680
ISBN 978-3-540-50768-0
Pagine 322
Peso 481 g
Illustrazioni XVIII, 322 p.
Serie Lecture Notes in Computer Science
Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Lecture Notes in Artificial Intelligence
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.