Fr. 188.00

Supersymmetry and Trace Formulae - Chaos and Disorder

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The motion of a particle in a random potential in two or more dimensions is chaotic, and the trajectories in deterministically chaotic systems are effectively random. It is therefore no surprise that there are links between the quantum properties of disordered systems and those of simple chaotic systems. The question is, how deep do the connec tions go? And to what extent do the mathematical techniques designed to understand one problem lead to new insights into the other? The canonical problem in the theory of disordered mesoscopic systems is that of a particle moving in a random array of scatterers. The aim is to calculate the statistical properties of, for example, the quantum energy levels, wavefunctions, and conductance fluctuations by averaging over different arrays; that is, by averaging over an ensemble of different realizations of the random potential. In some regimes, corresponding to energy scales that are large compared to the mean level spacing, this can be done using diagrammatic perturbation theory. In others, where the discreteness of the quantum spectrum becomes important, such an approach fails. A more powerful method, devel oped by Efetov, involves representing correlation functions in terms of a supersymmetric nonlinear sigma-model. This applies over a wider range of energy scales, covering both the perturbative and non-perturbative regimes. It was proved using this method that energy level correlations in disordered systems coincide with those of random matrix theory when the dimensionless conductance tends to infinity.

Sommario

Periodic Orbits, Spectral Statistics, and the Riemann Zeros.- Supersymmetric Generalization of Dyson's Brownian Motion (Diffusion).- What Happens to the Integer Quantum Hall Effect in Three Dimensions?.- Trace Formulas in Classical Dynamical Systems.- Theory of Eigenfunction Scarring.- Nonequilibrium Effects in the Tunneling Conductance Spectra of Small Metallic Particles.- Pair Correlations of Quantum Chaotic Maps from Supersymmetry.- Semiclassical Quantization of Maps and Spectral Correlations.- Wave Functions, Wigner Functions and Green Functions of Chaotic Systems.- Wave Functions in Chaotic Billiards: Supersymmetry Approach.- Correlations of Wave Functions in Disordered Systems.- Spatial Correlations in Chaotic Eigenfunctions.- Level Curvature Distribution Beyond Random Matrix Theory.- Almost-Hermitian Random Matrices: Applications to the Theory of Quantum Chaotic Scattering and Beyond.- Topological Features of the Magnetic Response in Inhomogeneous Magnetic Fields.- From Classical To Quantum Kinetics.- Stochastic Scattering.- H = xp and The Riemann Zeros.- Parametric Random Matrices: Static and Dynamic Applications.

Dettagli sul prodotto

Con la collaborazione di David E Khmelnitskii (Editore), Jonathan P. Keating (Editore), David E. Khmelnitskii (Editore), Igor V. Lerner (Editore), Jonatha P Keating (Editore), Jonathan P Keating (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 26.06.2009
 
EAN 9780306459337
ISBN 978-0-306-45933-7
Pagine 404
Peso 1012 g
Illustrazioni IX, 404 p.
Serie Nato Science Series B:
Nato Science Series B:
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Fisica teorica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.