Fr. 168.00

The Theory of Algebraic Number Fields

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Constance Reid, in Chapter VII of her book Hilbert, tells the story of the writing of the Zahlbericht, as his report entitled Die Theorie der algebra is chen Zahlkorper has always been known. At its annual meeting in 1893 the Deutsche Mathematiker-Vereinigung (the German Mathematical Society) invited Hilbert and Minkowski to prepare a report on the current state of affairs in the theory of numbers, to be completed in two years. The two mathematicians agreed that Minkowski should write about rational number theory and Hilbert about algebraic number theory. Although Hilbert had almost completed his share of the report by the beginning of 1896 Minkowski had made much less progress and it was agreed that he should withdraw from his part of the project. Shortly afterwards Hilbert finished writing his report on algebraic number fields and the manuscript, carefully copied by his wife, was sent to the printers. The proofs were read by Minkowski, aided in part by Hurwitz, slowly and carefully, with close attention to the mathematical exposition as well as to the type-setting; at Minkowski's insistence Hilbert included a note of thanks to his wife. As Constance Reid writes, "The report on algebraic number fields exceeded in every way the expectation of the members of the Mathemati cal Society. They had asked for a summary of the current state of affairs in the theory. They received a masterpiece, which simply and clearly fitted all the difficult developments of recent times into an elegantly integrated theory.

Sommario

1. Algebraic Numbers and Number Fields.- 2. Ideals of Number Fields.- 3. Congruences with Respect to Ideals.- 4. The Discriminant of a Field and its Divisors.- 5. Extension Fields.- 6. Units of a Field.- 7. Ideal Classes of a Field.- 8. Reducible Forms of a Field.- 9. Orders in a Field.- 10. Prime Ideals of a Galois Number Field and its Subfields.- 11. The Differents and Discriminants of a Galois Number Field and its Subfields.- 12. Connexion Between the Arithmetic and Algebraic Properties of a Galois Number Field.- 13. Composition of Number Fields.- 14. The Prime Ideals of Degree 1 and the Class Concept.- 15. Cyclic Extension Fields of Prime Degree.- 16. Factorisation of Numbers in Quadratic Fields.- 17. Genera in Quadratic Fields and Their Character Sets.- 18. Existence of Genera in Quadratic Fields.- 19. Determination of the Number of Ideal Classes of a Quadratic Field.- 20. Orders and Modules of Quadratic Fields.- 21. The Roots of Unity with Prime Number Exponent l and the Cyclotomic Field They Generate.- 22. The Roots of Unity for a Composite Exponent m and the Cyclotomic Field They Generate.- 23. Cyclotomic Fields as Abelian Fields.- 24. The Root Numbers of the Cyclotomic Field of the l-th Roots of Unity.- 25. The Reciprocity Law for l-th Power Residues Between a Rational Number and a Number in the Field of l-th Roots of Unity.- 26. Determination of the Number of Ideal Classes in the Cyclotomic Field of the m-th Roots of Unity.- 27. Applications of the Theory of Cyclotomic Fields to Quadratic Fields.- 28. Factorisation of the Numbers of the Cyclotomic Field in a Kummer Field.- 29. Norm Residues and Non-residues of a Kummer Field.- 30. Existence of Infinitely Many Prime Ideals with Prescribed Power Characters in a Kummer Field.- 31. Regular Cyclotomic Fields.- 32.Ambig Ideal Classes and Genera in Regular Kummer Fields.- 33. The l-th Power Reciprocity Law in Regular Cyclotomic Fields.- 34. The Number of Genera in a Regular Kummer Field.- 35. New Foundation of the Theory of Regular Kummer Fields.- 36. The Diophantine Equation ?m + ?m + ?m = 0.- References.- List of Theorems and Lemmas.

Info autore

David Hilbert (1862-1943) gilt als der vielleicht universellste Mathematiker des ausgehenden 19. und beginnenden 20. Jahrhunderts. Er hat auf zahlreichen Gebieten der Mathematik und der mathematischen Physik grundlegende neue Resultate vorgelegt und wesentliche Entwicklungen angebahnt.

Dettagli sul prodotto

Autori David Hilbert, F. Lemmermeyer, R. Schoof
Con la collaborazione di I. T. Adamson (Editore), I. T. Adamson (Traduzione), I.T. Adamson (Traduzione)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 23.01.2004
 
EAN 9783540627791
ISBN 978-3-540-62779-1
Pagine 351
Dimensioni 158 mm x 27 mm x 241 mm
Peso 696 g
Illustrazioni XXXVI, 351 p.
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.