Condividi
Fr. 280.00
Y Li, Yuzhuo Li, Li Yuzhuo, Yuzhu Li, Yuzhuo Li, Li Yuzhuo
Microelectronic Applications of Chemical Mechanical Planarization
Inglese · Copertina rigida
Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)
Descrizione
Informationen zum Autor YUZHUO LI is a tenured professor in the Department of Chemistry and a member of the Center for Advanced Materials Processing (CAMP) at Clarkson University in Potsdam, New York. He is a member of the American Chemical Society, Chinese American Chemical Society, Materials Research Society, and The Electrochemical Society. He also holds guest professorships at several Chinese universities, including Yangzhou University and Sun Yat-Sen University. Klappentext An authoritative, systematic, and comprehensive description of current CMP technologyChemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization:*Provides in-depth coverage of a wide range of state-of-the-art technologies and applications*Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips*Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP*Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP*Provides a perspective on the opportunities and challenges of the next fifteen yearsComplete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate courses that cover CMP or related semiconductor manufacturing processes. Zusammenfassung An authoritative, systematic, and comprehensive description of current CMP technologyChemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization:*Provides in-depth coverage of a wide range of state-of-the-art technologies and applications*Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips*Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP*Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP*Provides a perspective on the opportunities and challenges of the next fifteen yearsComplete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate co...
Sommario
Foreword.
Contributing Authors.
1 Why CMP?
1.1 Introduction.
1.2 Preparation of Planar Surface.
1.3 Formation of Functional Microstructures.
1.4 CMP to Correct Defects.
1.5 Advantages and Disadvantages of CMP.
1.6 Conclusion.
2 Current and Future Challenges in CMP Materials.
2.1 Introduction.
2.2 Historic Prospective and Future Trends.
2.3 CMP Material Characterization.
2.4 Conclusions.
3 Processing Tools for Manufacturing.
3.1 CMP Operation and Characteristics.
3.2 Description of the CMP Process.
3.3 Overview of Polishers.
3.4 Carriers and Dressers.
3.5 In Situ and Ex Situ Metrologies.
3.6 Conclusions.
4 Tribometrology of CMP Process.
4.1 Introduction.
4.2 Tribometrology of CMP.
4.3 Factors Influencing the Tribology During CMP.
4.4 Optimizing Pad Conditioning Process.
4.5 Conditioner Design.
4.6 CMP Consumable Testing.
4.7 Defect Analysis.
4.8 Summary.
5 Pads for IC CMP.
5.1 Introduction.
5.2 Physical Properties of CMP Pads and Their Effects on Polishing Performance.
5.3 Chemical Properties of CMP Pads and Their Effects on Polishing Performances.
5.4 Pad Conditioning and Its Effect on CMP Performance.
5.5 Modeling of Pad Effects on Polishing Performance.
5.6 Novel Designs of CMP Pads.
6 Modeling.
6.1 Introduction.
6.2 A Two-Step Chemical Mechanical Material Removal Model.
6.3 Pad Surfaces and Pad Surface Contact Modeling.
6.4 Reaction Temperature.
6.5 A Polishing Example.
6.6 Topography Planarization.
7 Key Chemical Components in Metal CMP Slurries.
7.1 Introduction.
7.2 Oxidizers.
7.3 Chelating Agents.
7.4 Surfactants.
7.5 Abrasive Particles.
7.6 Particle Surface Modification.
7.7 Soft Particles.
7.8 Case Study: Organic Particles as Abrasives in Cu CMP.
7.9 Conclusions.
8 Corrosion Inhibitor for Cu CMP Slurry.
8.1 Thermodynamic Considerations of Copper Surface.
8.2 Types of Passivating Films on Copper Surface Under Oxdizing Conditions.
8.3 Effect of pH on BTA in Glycine-Hydrogen Peroxide Based Cu CMP Slurry.
8.4 Evaluation of Potential BTA Alternatives for Acidic Cu CMP Slurry.
8.5 Electrochemical Polarization Study of Corrosion Inhibitors in Cu CMP Slurry.
8.6 Hydrophobicity of the Surface Passivation Film.
8.7 Competitive Surface Adsorption Behavior of Corrosion Inhibitors.
8.8 Summary.
9 Tungsten CMP Applications.
9.1 Introduction.
9.2 Basic Tungsten Application, Requirements, and Process.
9.3 W CMP Defects.
9.4 Various W CMP Processing Options.
9.5 Overall Tungsten Process (Various Processing Design Options and Suggestions).
9.6 Conclusions.
10 Electrochemistry in ECMP.
10.1 Introduction.
10.2 Physical and Chemical Processes in Electrochemical Planarization.
10.3 Mechanisms and Limitation of Electrochemical Planarization.
10.4 In Situ Analysis of Anodic/Passivation Films.
10.5 Modified Electrochemical Polishing Approaches.
11 Planarization Technologies Involving Electrochemical Reactions.
11.1 Introduction.
11.2 CMP.
11.3 ECP.
11.4 ECMP.
11.5 Full Sequence Electrochemical-Mechanical Planarization.
11.6 Conclusions.
12 Shallow Trench Isolation Chemical Mechanical Planarization.
12.1 Introduction.
12.2 LOCOS to STI.
12.3 Shallow Trench Isolation.
12.4 The Planarization Step in Detail.
12.5 Optimization Techniques.
12.6 Outlook.
13 Consumables for Advanced Shallow Trench Isolation (STI).
13.1 Introduction.
13.2 Representative Testing Wafers for STI Process and Consumable Evaluations.
13.3 Effects of Abrasive Types on STI Slurry Performance.
13.4 Effects of Chemical Additives to Oxide: Nitride Selectivity.
13.5 Effect of Slurry pH.
13.6 Effect of Abrasive Particle Size on Removal Rate and Defectivity.
13.7 Conclusion.
14 Fabrication of Microdevices Using CMP.
14.1 Introduction.
14.2 Microfabrication Processes.
14.3 Microfabricati
Dettagli sul prodotto
| Autori | Y Li, Yuzhuo Li, Li Yuzhuo |
| Con la collaborazione di | Yuzhu Li (Editore), Yuzhuo Li (Editore), Li Yuzhuo (Editore) |
| Editore | Wiley, John and Sons Ltd |
| Lingue | Inglese |
| Formato | Copertina rigida |
| Pubblicazione | 13.11.2007 |
| EAN | 9780471719199 |
| ISBN | 978-0-471-71919-9 |
| Pagine | 760 |
| Categorie |
Saggistica
> Natura, tecnica
> Scienze naturali
Scienze naturali, medicina, informatica, tecnica > Chimica Mikroelektronik, Halbleiter, Chemical Engineering, chemische Verfahrenstechnik, Semiconductors, Allg. Chemische Verfahrenstechnik, Electrical & Electronics Engineering, Elektrotechnik u. Elektronik, Components & Devices, Komponenten u. Bauelemente |
Recensioni dei clienti
Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.
Scrivi una recensione
Top o flop? Scrivi la tua recensione.