Esaurito

Principles of Data Mining

Inglese · Tascabile

Descrizione

Ulteriori informazioni

Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas.
This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples & explanations of the algorithms given.
It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.
As an aid to self study, this book aims to help the general reader develop the necessary understanding to use commercial data mining packages discriminatingly, as well as enabling the advanced reader or academic researcher to understand or contribute to future technical advances in the field.
Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included.

Sommario

Introduction to Data Mining.- Data for Data Mining.- Introduction to Classification: Naive Bayes and Nearest Neighbour.- Using Decision Trees for Classification.- Decision Tree Induction: Using Entropy for Attribute Selection.- Decision Tree Induction: Using Frequency Tables for Attribute Selection.- Estimating the Predictive Accuracy of a Classifier.- Continuous Attributes.- Avoiding Overfitting of Decision Trees.- More about Entropy.- Inducing Modular Rules for Classification.- Measuring the Performance of a Classifier.- Association Rule Mining I.- Association Rule Mining II.- Clustering.- Text Mining.- References.- Appendix A: Essential Mathematics.- Appendix B: Datasets.- Appendix C: Sources of Further Information.- Appendix D: Glossary and Notation.- Appendix E: Solutions to Self-assessment Exercises.- Index.

Dettagli sul prodotto

Autori M. Bramer, Max Bramer
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2007
 
EAN 9781846287657
ISBN 978-1-84628-765-7
Pagine 344
Peso 570 g
Serie Undergraduate Topics in Computer Science
Undergraduate Topics in Computer Science
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.