Fr. 88.00

Comparison Between Methods Estimation of Rayleigh Distribution - Second Edition

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni










We have estimated the parameters of a Rayleigh distribution using different ways, including traditional methods (classical), such as (Least Squares Method, Maximum Likelihood Method, White Method and Ridge Regression Method). The Robust methods we used are (Robustfit Method, M-estimator Method and Robust Ridge Regression Method). These methods are used to find the estimators of the parameters of this distribution we adopt an experimental study to design a number of simulation experiments (Simulation) using the software package Matlab. Default values for the parameters of the distribution and different sample sizes are used. The experiment is repeated 1000 times to get a high homogeneity. For comparison between estimators to determine which is better Several scales, including the scale Mean Squares Error (MSE) and the measure of the Mean Squares Error of Parameters (MSE¿) and II measure the coefficient of determination R2, have been used. It has been found that the least squares method is the best method of estimation among classical methods Robustfit is the best method among the Robust methods in both simulation experiments and field study of the real data.

Info autore










Prof.Dr. Fadhil Al-Abidi holds a PhD in statistics from Baghdad University in 2001, he is Dean of college and faculty member in Al-Furat Al-Awast University. Mujtaba Zuhair holds a Msc in mathematics science from the University of Kufa in 2014, work Computer Technical Engineering Department, Faculty of Technical Engineering, The Islamic University.

Dettagli sul prodotto

Autori Fadhil Abdul Abbas Al- Aabdi, Mujtaba Zuhair Ali Karidi
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 03.11.2025
 
EAN 9786209188442
ISBN 978-620-9-18844-2
Pagine 136
Dimensioni 150 mm x 220 mm x 9 mm
Peso 221 g
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.