Fr. 135.00

Neural Connectomics Challenge

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for the advancement of neuroscience through machine learning techniques, with a focus on the major open problems in neuroscience.
While the techniques have been developed for a specific application, they address the more general problem of network reconstruction from observational time series, a problem of interest in a wide variety of domains, including econometrics, epidemiology, and climatology, to cite only a few.< The book is designed for the mathematics, physics and computer science communities that carry out research in neuroscience problems. The content is also suitable for the machine learning community because it exemplifies how to approach the same problem from different perspectives.

Sommario

First Connectomics Challenge: From Imaging to Connectivity.- Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging.- Supervised Neural Network Structure Recovery.- Signal Correlation Prediction Using Convolutional Neural Networks.- Reconstruction of Excitatory Neuronal Connectivity via Metric Score Pooling and Regularization.- Neural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features.- Efficient Combination of Pairwise Feature Networks.- Predicting Spiking Activities in DLS Neurons with Linear-Nonlinear-Poisson Model.- SuperSlicing Frame Restoration for Anisotropic ssTEM and Video Data.- Supplemental Information.

Dettagli sul prodotto

Con la collaborazione di Demian Battaglia (Editore), Isabelle Guyon (Editore), Vincent Lemaire (Editore), Javier Orlandi (Editore), Bisakha Ray (Editore), Jordi Soriano (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 12.05.2017
 
EAN 9783319530697
ISBN 978-3-31-953069-7
Pagine 117
Dimensioni 173 mm x 14 mm x 242 mm
Peso 309 g
Illustrazioni X, 117 p. 28 illus.
Serie The Springer Series on Challenges in Machine Learning
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

B, machine learning, Artificial Intelligence, Deep Learning, Maschinelles Sehen, Bildverstehen, computer science, Computer Vision, Image Processing and Computer Vision, Optical data processing, Image processing, Time Series, causality, Connectomes, Network reconstruction, Neural connectomics, Connectomics

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.