Fr. 216.20

Photonic Imaging for Biology - From Conventional Microscopy to Super-Resolution

Inglese · Copertina rigida

Pubblicazione il 01.11.2025

Descrizione

Ulteriori informazioni










Light microscopy is a central tool in biological research, allowing scientists to observe living cells and organisms with details invisible to the naked eye. Since its inception in the 17th century, it has evolved through key innovations in optics, staining, electronics and informatics. Major milestones include phase contrast, differential interference contrast, immunofluorescence, genetically encoded fluorescent proteins, confocal microscopy and super-resolution microscopy.

The discovery of Green Fluorescent Protein (GFP) revolutionized molecular biology, while 21st-century advances, such as super-resolution microscopy and artificial intelligence, have pushed imaging capabilities even further. Modern microscopes now integrate digital imaging, advanced optics and computational analysis for enhanced visualization and interpretation.

Photonic Imaging for Biology outlines major microscopy techniques that have driven biological discoveries, starting with fundamental principles and covering a range of methods, including brightfield, fluorescence, confocal, light-sheet, single particle tracking, photoperturbation, fluorescence correlation spectroscopy and super-resolution microscopy. The book concludes with a chapter on image analysis, highlighting recent progress in artificial intelligence. Each chapter focuses on specific techniques and their applications, strengths and limitations.

Sommario










Preface xi
Jean-Baptiste SIBARITA
Chapter 1. Principles of Light Microscopy 1
Guillaume DUPUIS
1.1. Introduction 1
1.2. Principle of image formation 3
1.3. Optical sectioning techniques in fluorescence microscopy 23
1.4. Conclusion 32
1.5. References 32
Chapter 2. Contrast-based Label-Free Imaging and Phase Measurement 35
Pierre BON
2.1. Introduction, the biological object as an index object 35
2.2. Zernike phase contrast 38
2.3. Differential interference contrast 42
2.4. Other contrast methods with transparent objects 45
2.5. Measuring phase quantitatively: more than just contrast 46
2.6. Conclusions 49
2.7. References 49
Chapter 3. Fluorophores and Labeling Methods for Fluorescence Microscopy 51
Jip WULFFELÉ and Dominique BOURGEOIS
3.1. Introduction 51
3.2. Basics of fluorophore photophysics 52
3.3. Fluorescent proteins 53
3.4. Organic dyes 59
3.5. Conclusion 64
3.6. References 65
Chapter 4. Quantitative FRAP and FCS 69
Cyril FAVARD
4.1. Life is motion 69
4.2. FRAP 71
4.3. FCS 82
4.4. Conclusion 94
4.5. References 94
Chapter 5. Single-Particle Tracking for Nanoscale Dynamics of Biological Samples 97
Antony LEE and Laurent COGNET
5.1. Introduction 97
5.2. Nanoscale localization 98
5.3.Trajectory reconstruction 100
5.4. Nanoscale dynamics 102
5.5. References 110
Chapter 6. In Depth Microscopy 113
Tom DELAIRE and Rémi GALLAND
6.1. Introduction 113
6.2. Confocal microscopy 115
6.3. Multi-photon microscopy 120
6.4. Light-sheet fluorescence microscopy 125
6.5. Computational-based methods. 132
6.6. Futures challenges for 3D imaging of complex samples 134
6.7. References 139
Chapter 7. Structured Illumination Microscopy 145
Alexandra FRAGOLA
7.1. Introduction 145
7.2. The principle of structured illumination microscopy 146
7.3. Reconstructing the 2D SIM image 149
7.4. Experimental implementation of the 2D SIM 151
7.5. 3D SIM 153
7.6. Saturated SIM, or SSIM: a resolution gain above a factor of 2 154
7.7. Conclusion and perspective 155
7.8. References 157
Chapter 8. STED Imaging of Neuronal Morphology 159
Veera Venkata Gopala Krishna INAVALLI and Urs Valentin NÄGERL
8.1. Introduction 159
8.2. Principle 162
8.3. Instrumentation of STED 165
8.4. New developments 177
8.5. Summary and outlook 182
8.6. References 183
Chapter 9. Single-Molecule Localization Microscopy: From Imaging Cellular Structures to Quantitative Image Analysis 189
Marina S. DIETZ and Mike HEILEMANN
9.1. Introduction 189
9.2. Concepts for single-molecule localization microscopy 190
9.3. Multiplexing 193
9.4. Extracting quantitative information from SMLM data 196
9.5. Conclusion 198
9.6. Acknowledgments 198
9.7. References 198
Chapter 10. Image Processing and Image Analysis in Microscopy 205
Daniel SAGE and Anaïs BADOUAL
10.1. Introduction 205
10.2. Context 206
10.3. Biomage processing 213
10.4. Bioimage analysis 221
10.5. Discussion 230
10.6. References 232
List of Authors 239
Index 241


Info autore










Jean-Baptiste Sibarita is a physicist and expert in quantitative live-cell microscopy. He leads a CNRS R&D team at the University of Bordeaux, France. He has developed several innovative imaging techniques and software, authored over 100 peer-reviewed publications and patents in the fields of microscopy, image analysis, cell biology and neuroscience, and has led multiple academic and industrial collaborations.


Dettagli sul prodotto

Autori Jean-Baptiste Sibarita
Con la collaborazione di Jean-Baptiste Sibarita (Editore)
Editore ISTE Ltd.
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.11.2025, ritardato
 
EAN 9781789452228
ISBN 978-1-78945-222-8
Pagine 256
Serie ISTE Invoiced
Categoria Scienze naturali, medicina, informatica, tecnica > Chimica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.