Fr. 205.00

Hydrogen Storage - A Wide Range of Solutions

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni










Hydrogen storage plays a central role in the hydrogen energy value chain. Efficient, economical and safe methods are essential to increase the gas' volume density and enable the sector's deployment.
Hydrogen Storage analyzes the various ways of storing hydrogen, whether in a gaseous state in pressurized reservoirs or geological structures, in a liquid state through the formation of ammonia or hydrogen-carrying organic liquids, or in a solid state in hydrogen-containing inorganic compounds such as metal hydrides and regenerable hydrides, or by adsorption into porous materials.
For each method, concepts are presented according to the processes used or the storage materials involved. Their advantages and disadvantages, as well as the main obstacles and challenges to be overcome, are analyzed.
This book provides an overview of the various storage solutions currently available, helping operators to choose the most appropriate method for a given application.


Sommario










Preface xi
Patricia DE RANGO and Fermin CUEVAS
Chapter 1 Hyperbaric Storage 1
David CHAPELLE, Damien HALM and Stéphane VILLALONGA
1.1 Compressed hydrogen 1
1.1.1 Overview of H 2 2
1.1.2 Compression 7
1.1.3 Mechanical tank geometry 9
1.1.4 Regulations and standards 12
1.2 Design and modeling 13
1.2.1 Tank testing 17
1.2.2 Tank geometry modeling 24
1.2.3 Behavior of the tank 28
1.2.4 Tank optimization 35
1.2.5 Outlook 38
1.3 Manufacturing processes 38
1.3.1 Boss manufacturing 39
1.3.2 Polymer liner manufacturing 40
1.3.3 Composite manufacturing 43
1.3.4 Developments and prospects (materials, thermoplastics, etc.) 47
1.4 Acknowledgments 52
1.5 References 52
Chapter 2 Geological Storage 57
Laurent TRUCHE and Frédéric-Victor DONZÉ
2.1 Introduction 57
2.2 Underground gas storage 61
2.2.1 General concepts 61
2.2.2 Salt cavern storage 62
2.2.3 Aquifer storage 63
2.2.4 Storage in depleted oil or gas reservoirs 65
2.2.5 Storage in former coal mines 66
2.2.6 Storage in lined hard rock caverns or refrigerated cavities 66
2.2.7 Feedback from the past 67
2.3 Hydrodynamic properties of hydrogen in a storage context 69
2.3.1 Fluid-H 2 interactions 69
2.3.2 Solid-H 2 interactions 74
2.4 Hydrogen reactivity in underground environments 81
2.4.1 Abiotic reactivity and surface catalysis 81
2.4.2 Microbial reactivity 86
2.5 Scientific perspectives and challenges 89
2.6 References 90
Chapter 3 Liquid Storage: LOHC 99
Xiaolong JI, Valérie MEILLE and Catherine PINEL
3.1 Introduction 99
3.2 Aromatic hydrocarbons 100
3.2.1 Introduction 100
3.2.2 Aromatic hydrocarbon LOHC couples 104
3.3 N-containing molecules 119
3.3.1 Introduction 119
3.3.2 N-heterocycles 119
3.3.3 Nitriles/amines 128
3.4 O-containing molecules 129
3.4.1 Introduction 129
3.4.2 Monoalcohols 130
3.4.3 Polyols 137
3.5 Amines/amides 139
3.6 Further comparison and conclusion 139
3.7 List of abbreviations 139
3.8 References 141
Chapter 4 Liquid Storage: Ammonia 161
Nicolas BION, Fabien CAN, Charlotte CROISÉ, Xavier COURTOISand Mohamed El Amine KRIBÉCHE
4.1 Introduction 161
4.2 Ammonia as an energy carrier 162
4.3 Compatibility with fuel cells 164
4.4 Ammonia synthesis 166
4.4.1 The Haber-Bosch process 166
4.4.2 Ammonia synthesis catalysts 170
4.4.3 Mechanisms and limiting steps in ammonia synthesis 178
4.5 Alternative ammonia synthesis processes 181
4.6 Ammonia decomposition 184
4.6.1 High-temperature ammonia cracking 184
4.6.2 Electro-oxidation of ammonia 187
4.7 Overview and outlook 191
4.8 References 193
Chapter 5 Reversible Hydrogen Storage: Intermetallic Compounds and Mg-based Materials 203
Ghofrane FEDLOUK, Hugo BENET, Valérie PAUL-BONCOUR, Judith MONNIER and Junxian ZHANG
5.1 Introduction 203
5.2 Intermetallic compounds 205
5.2.1 BCC-type alloys 205
5.2.2 AB compounds 207
5.2.3 AB 2 compounds 208
5.2.4 AB 5 compounds 210
5.2.5 Ab X Compounds (2 < X < 5) 211
5.3 Mg-based materials 220
5.3.1 Magnesium hydride MgH 2 220
5.3.2 Binary Mg-based compounds 226
5.3.3 Ternary Mg-based compounds 233
5.4 Conclusion 238
5.5 References 241
Chapter 6 High-Entropy Alloys for Hydrogen Storage 255
Nayely PINEDA ROMERO, Claudia ZLOTEA, Kylia MARCUS
6.1 Context 255
6.2 High-entropy alloys 257
6.2.1 Definition of HEAs 257
6.2.2 Thermodynamics of HEAs 260
6.2.3 Elaboration methods for HEAs 264
6.2.4 Prediction of HEAs phases and element selection 266
6.2.5 Microstructure of HEAs 267
6.2.6 Large-scale instruments for the characterization of HEAs 269
6.2.7 H 2 storage properties in HEAs 270
6.3 Review of high-entropy alloys 278
6.3.1 bcc phase in HEAs 278
6.3.2 Intermetallic phases in HEAs 286
6.4 Conclusions and perspectives 289
6.5 References 291
Chapter 7 Regenerable Hydrides 303
Carlos A. CASTILLA-MARTINEZ, Jean-Louis BOBET and Umit B. DEMIRCI
7.1 Introduction 303
7.2 Alkaline hydrides 306
7.2.1 MH hydrides with M for Li, Na or K 306
7.2.2 LiH hydrolysis and hydrogen production 307
7.2.3 LiH regeneration 309
7.3 Magnesium hydrides 310
7.3.1 Introduction 310
7.3.2 MgH 2 hydride 311
7.3.3 Magnesium alloys 314
7.3.4 Regeneration 316
7.4 Aluminum hydrides 317
7.4.1 Introduction 317
7.4.2 AlH 3 alane 318
7.4.3 Lithium alanate LiAlH 4 321
7.5 Alkali borohydrides 322
7.5.1 Introduction 322
7.5.2 Lithium borohydride LiBH 4 323
7.5.3 Sodium borohydride NaBH 4 325
7.5.4 Potassium borohydride KBH 4 328
7.6 BNH compounds 330
7.6.1 Introducing BNH compounds 330
7.6.2 Ammonia borane NH 3 BH 3 331
7.6.3 Alkaline amidoboranes with M for Li, Na or K 335
7.6.4 Hydrazine borane N 2 H 4 BH 3 and its derivatives 337
7.6.5 Toward other BNH compounds 338
7.7 Conclusions and outlook 339
7.8 References 341
Chapter 8 Hydrogen Adsorption in High-Surface Area Porous Materials 357
Rafael MORALES-OSPINO, Alain CELZARD and Vanessa FIERRO
8.1 Introduction 357
8.2 Adsorption definition and the Gibbs adsorption model 358
8.3 How to report excess amount 361
8.4 Excess amount versus adsorbed amount 362
8.5 Total stored amount and release capacity 365
8.6 Experimental procedure to obtain high-pressure isotherms 366
8.6.1 Gravimetric method 367
8.6.2 Manometric method 369
8.7 Characterization of adsorbents for hydrogen storage 371
8.7.1 Pore volume and pore size distribution 372
8.7.2 Specific surface area 376
8.8 Adsorbents for hydrogen storage 379
8.9 Conclusion 383
8.10 References 384
List of Authors 395
Index 399


Info autore










Patricia de Rango is CNRS Researcher at the Institut Néel, France, and co-head of the storage axis of the CNRS hydrogen research federation, FRH2. Her research includes materials for energy, particularly the study of metal hydrides for hydrogen storage. Since October 2024, she has been Coordinator of the PEPR-H2 SOLHYD project.
Fermin Cuevas is CNRS Researcher at ICMPE, France, and co-head of the storage axis of the CNRS hydrogen research federation, FRH2. His research includes intermetallic materials, composites and complex hydrides for solid hydrogen storage. Since November 2024, he has been Director of the CNRS Office in China.


Dettagli sul prodotto

Autori Fermin Cuevas, Fermin (ICMPE Cuevas, Patricia de Rango, Patricia (Institut Neel de Rango
Con la collaborazione di Fermin Cuevas (Editore), Fermin (ICMPE Cuevas (Editore), Patricia de Rango (Editore), Patricia (Institut Neel de Rango (Editore)
Editore ISTE Ltd.
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.11.2025
 
EAN 9781789452235
ISBN 978-1-78945-223-5
Pagine 416
Dimensioni 164 mm x 243 mm x 31 mm
Peso 752 g
Serie ISTE Invoiced
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Termotecnica, tecnica energetica ed elettrica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.