Fr. 134.00

The Theory of Lattice-Ordered Groups

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.

Sommario

1 Lattices.- 2 Lattice-ordered groups.- 3 Convex l-subgroups.- 4 Ordered permutation groups.- 5 Right-ordered groups.- 6 Totally ordered groups.- 7 Embeddings of lattice-ordered groups.- 8 Lattice properties in lattice-ordered groups.- 9 Varieties of lattice-ordered groups.- 10 Free l-groups.- 11 The semigroup of l-varieties.- 12 The lattice of l-varieties.- 13 Ordered permutation groups and l-varieties.- 14 Quasivarieties of lattice-ordered groups.

Dettagli sul prodotto

Autori V Kopytov, V M Kopytov, V. M. Kopytov, V.M. Kopytov, N Ya Medvedev, N. Ya. Medvedev, N.Ya. Medvedev
Editore Springer Netherlands
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 30.06.2009
 
EAN 9780792331698
ISBN 978-0-7923-3169-8
Pagine 400
Dimensioni 155 mm x 235 mm x 25 mm
Peso 767 g
Illustrazioni XVI, 400 p.
Serie Mathematics and Its Applications
Mathematics and Its Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.