Fr. 169.00

Efficient Uranium Reduction Extraction - Material Design and Reaction Mechanisms

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni

Covers fundamental aspects and the current state of the art methods in the field of uranium extraction.

Sommario

CHAPTER 1 BACKGROUND OF URANIUM CHEMISTRY
1.1 Introduction of uranium in nuclear industry
1.2 Coordination and species of uranium
 
CHAPTER 2 INTRODUCTION OF URANIUM REDUCTION EXTRACTION
2.1 Introduction of uranium extraction
2.2 Introduction of uranium reduction extraction
2.3 Key factors to influence the uranium reduction extraction
2.4 The practical situation that requires uranium extraction
 
CHAPTER 3 URANIUM REDUCTION EXTRACTION BY MODIFIED NANO ZERO-VALENT IRON
3.1 Introduction of nano zero-valent iron
3.2 Material design for promoted stability and reductive ability
3.3 Uranium extraction performance
3.4 Reaction mechanism
3.5 Conclusion and future perspectives
 
CHAPTER 4 URANIUM REDUCTION EXTRACTION BY COMMERCIAL IRON POWDER
4.1 Introduction of alternative abundant reductant-commercial iron powder
4.2 Ultrasound Enhancement Of Uranium Extraction By Commercial Iron Powder
4.3 Microbial Sulfurization Enhanced Commercial Iron Powder Extraction Of Uranium
4.4 Conclusion and Perspectives
 
CHAPTER 5 PHOTOCATALYTIC URANIUM REDUCTION EXTRACTION BY CARBON-SEMICONDUCTOR HYBRID MATERIAL
5.1 Introduction of photocatalytic uranium reduction extraction
5.2 Motivated material design of carbon-semiconductor hybrid material
5.3 Band engineering of carbon-semiconductor hybrid material
5.4 Assembly of carbon-semiconductor hybrid material for facile recycle use
5.5 Conclusion and perspectives
 
CHAPTER 6 PHOTOCATALYTIC URANIUM REDUCTION EXTRACTION BY SURFACE RECONSTRUCTED SEMICONDUCTOR
6.1 Introduction
6.2 Design Of Hydrogen-Incorporated Semiconductor-Hydrogen-Assis
6.3 Hydrogen-Incorporated Vacancy Engineering
6.4 Conclusions
 
CHAPTER 7 ENHANCED PHOTOCATALYTIC URANIUM REDUCTION EXTRACTION BY ELECTRON ENHANCEMENT
7.1 Introduction
7.2 Plasmonic enhancement of uranium extraction
7.3 Enhanced by co-catalysis
7.4 Conclusion and perspectives
 
CHAPTER 8 PHOTOCATALYTIC URANIUM REDUCTION EXTRACTION IN TRIBUTYL PHOSPHATE-KEROSENE SYSTEM
8.1 Introduction of tributyl phosphate-kerosene system-spent fuel reprocessing
8.2 Material design-self oxidation of red phosphorus
8.3 Uranium extraction in tributyl phosphate-kerosene system
8.4 Reaction mechanism-self oxidation cycle
8.5 Conclusion and perspectives
 
CHAPTER 9 PHOTOCATALYTIC URANIUM REDUCTION EXTRACTION IN FLUORIDE-CONTAINING SYSTEM
9.1 Introduction of photocatalytic uranium reduction extraction
9.2 Simultaneously constructing U(VI) constraint sites and water oxidation sites to promote the purification of fluorine-containing uranium wastewater
9.3 Advanced photocatalytic heterojunction with plasmon resonance effect for uranium extraction from fluoride-containing uranium wastewater
 
CHAPTER 10 ELECTROCHEMICAL URANIUM REDUCTION EXTRACTION: DESIGN OF ELECTRODE MATERIALS
10.1 Introduction of electrocatalytic uranium reduction extraction
10.2 Edge-site confinement for enhanced electrocatalytic uranium reduction extraction
10.3 Facet-dependent electrochemical uranium extraction in seawater over Fe3O4 catalysts
10.4 Heterogeneous interface enhanced electrocatalytic uranium reduction extraction
10.5 Surface hydroxyl enhanced electrochemical extraction of uranium
10.6 Charge-separation engineering for electrocatalytic uranium reduction extraction
10.7 Conclusion And Perspectives
 
CHAPTER 11 ELECTROCHEMICAL URANIUM EXTRACTION FROM SEAWATER-REPRODUCED VACANCY
11.1 Introduction of electrocatalytic uranium extraction from seawater
11.2 High-selective site oxygen vacancy
11.3 Conclusion
 
CHAPTER 12 ELECTROCHEMICAL URANIUM EXTRACTION FROM NUCLEAR WASTEWATER OF FUEL PRODUCTION
12.1 Introduction of nuclear wastewater of fuel production: ultrahigh concentration of fluoride
12.2 Material design-ion pair sites
12.3 Uranium extraction performance

Info autore










Wenkun Zhu is the Principal Investigator in CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology (SWUST), China.
Rong He is a Professor in School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology (SWUST), China.
Tao Chen is a Professor in School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology (SWUST), China.


Riassunto

Covers fundamental aspects and the current state of the art methods in the field of uranium extraction.

Dettagli sul prodotto

Autori Tao Chen, Rong He, Wenkun Zhu
Editore Wiley-VCH
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.10.2025
 
EAN 9783527354146
ISBN 978-3-527-35414-6
Pagine 304
Dimensioni 175 mm x 17 mm x 15 mm
Peso 666 g
Categorie Scienze naturali, medicina, informatica, tecnica > Chimica > Chimica fisica

Chemie, Anorganische Chemie, Energie, ENERGY, kernenergie, chemistry, Nuclear Energy, Inorganic Chemistry, Kern- u. Radiochemie, Nuclear and Radiochemistry

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.