Fr. 198.00

Designing the Conceptual Landscape for a XAIR Validation Infrastructure - Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

Sommario

Synopsis of core concepts for explainable AI-ready data and models.- Conceptualizing validation systems for explainable AI A design approach.- Balancing performance and transparency.- Explainable AI for battery health monitoring.- A minimalistic definition of XAI explanations.-  A comparative analysis of deep learning architectures and explainable AI.- Conclusion.

Riassunto

This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

Dettagli sul prodotto

Con la collaborazione di Fadi Al Machot (Editore), Martin T. Horsch (Editore), Sebastian Scholze (Editore), Martin T Horsch (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 14.05.2025
 
EAN 9783031892738
ISBN 978-3-0-3189273-8
Pagine 193
Illustrazioni VI, 193 p. 23 illus., 16 illus. in color.
Serie Lecture Notes in Networks and Systems
Categorie Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Artificial Intelligence, Computational Intelligence, Research Data Management, Explainable Artificial Intelligence, Modelling and Simulation, Applied ontology, Semantic technology

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.