Fr. 85.00

Introduction to Homotopy Type Theory

Inglese · Copertina rigida

Pubblicazione il 31.08.2025

Descrizione

Ulteriori informazioni










This up-to-date introduction to type theory and homotopy type theory will be essential reading for advanced undergraduate and graduate students interested in the foundations and formalization of mathematics. The book begins with a thorough and self-contained introduction to dependent type theory. No prior knowledge of type theory is required. The second part gradually introduces the key concepts of homotopy type theory: equivalences, the fundamental theorem of identity types, truncation levels, and the univalence axiom. This prepares the reader to study a variety of subjects from a univalent point of view, including sets, groups, combinatorics, and well-founded trees. The final part introduces the idea of higher inductive type by discussing the circle and its universal cover. Each part is structured into bite-size chapters, each the length of a lecture, and over 200 exercises provide ample practice material.

Sommario










Preface; Introduction; Part I. Martin-Löf's Dependent Type Theory: 1. Dependent type theory; 2. Dependent function types; 3. The natural numbers; 4. More inductive types; 5. Identity types; 6. Universes; 7. Modular arithmetic via the Curry-Howard interpretation; 8. Decidability in elementary number theory; Part II. The Univalent Foundations of Mathematics: 9. Equivalences; 10. Contractible types and contractible maps; 11. The fundamental theorem of identity types; 12. Propositions, sets, and the higher truncation levels; 13. Function extensionality; 14. Propositional truncations; 15. Image factorizations; 16. Finite types; 17. The univalence axiom; 18. Set quotients; 19. Groups in univalent mathematics; 20. General inductive types; Part III. The Circle: 21. The circle; 22. The universal cover of the circle; References; Index.

Info autore

Egbert Rijke is Postdoctoral Research Fellow at Johns Hopkins University and is a pioneering figure in homotopy type theory. As one of the co-authors of the influential book 'Homotopy Type Theory: Univalent Foundations of Mathematics' (2013), he has played a pivotal role in shaping the field. He is also a founder and lead developer of the agda-unimath library, which stands as the largest library of formalized mathematics written in the Agda proof assistant.

Dettagli sul prodotto

Autori Egbert Rijke
Editore Cambridge Academic
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 31.08.2025
 
EAN 9781108844161
ISBN 978-1-108-84416-1
Illustrazioni Worked examples or Exercises
Serie Cambridge Studies in Advanced Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Fondamenti

MATHEMATICS / Logic, geometry, Topology, Mathematical logic, Mathematical foundations, Computer architecture and logic design, For undergraduate education and equivalents, For graduate / post-graduate and equivalents

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.