Fr. 70.00

Pancyclic and Bipancyclic Graphs

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation.
The following questions are highlighted through the book:
- What is the smallest possible number of edges in a pancyclic graph with v vertices?
- When do pancyclic graphs exist with exactly one cycle of every possible length?
- What is the smallest possible number of edges in a bipartite graph with v vertices?
- When do bipartite graphs exist with exactly one cycle of every possible length?

Sommario

1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References. 

Testo aggiuntivo

“In this book, the authors give a simple survey about the sufficient conditions for a graph to be pancyclic (uniquely bipancyclic). Moreover, the authors give the proofs of some classic results which are useful tools to study and generalize cycle problems. Therefore, this book can help students and researchers alike to find inspiration and ideas on pancyclic and bipancyclic problems.” (Junqing Cai, Mathematical Reviews, February, 2017)

Relazione

"In this book, the authors give a simple survey about the sufficient conditions for a graph to be pancyclic (uniquely bipancyclic). Moreover, the authors give the proofs of some classic results which are useful tools to study and generalize cycle problems. Therefore, this book can help students and researchers alike to find inspiration and ideas on pancyclic and bipancyclic problems." (Junqing Cai, Mathematical Reviews, February, 2017)

Dettagli sul prodotto

Autori John C. George, Abdollah Khodkar, W. D. Wallis, W.D. Wallis
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 27.05.2016
 
EAN 9783319319506
ISBN 978-3-31-931950-6
Pagine 108
Dimensioni 159 mm x 9 mm x 240 mm
Peso 200 g
Illustrazioni XII, 108 p. 64 illus.
Serie SpringerBriefs in Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

C, Diskrete Mathematik, Numerische Mathematik, Combinatorics, Mathematics and Statistics, Discrete Mathematics, Combinatorics & graph theory, Numerical analysis, Graph Theory, undirected graph, node-pancyclic, vertex-pancyclic, Hamiltonian graphs, bipartite graph, edge-pancyclic

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.