Fr. 168.00

Artificial Intelligence in Catalysis - Experimental and Computational Methodologies

Inglese · Copertina rigida

Spedizione di solito entro 4 a 7 giorni lavorativi

Descrizione

Ulteriori informazioni

Aimed at enhancing catalyst design and optimizing chemical processes by using machine learning techniques, the book is a must-have for researchers in academia and industry interested in developing new catalysts, improving organic synthesis, and minimizing waste and energy use.

Sommario

PART 1. MACHINE LEARNING APPLICATIONS IN STRUCTURAL ANALYSIS AND REACTION MONITORING
1) Computer Vision in Chemical Reaction Monitoring and Analysis
2) Machine Learning Meets Mass Spectrometry: a Focused Perspective
3) Application of Artificial Neural Networks in Analysis of Microscopy Data
 
PART 2. QUANTUM CHEMICAL METHODS MEET MACHINE LEARNING
4) Construction of Training Datasets for Chemical Reactivity Prediction Through Computational Means
5)Machine Learned Force Fields: Fundamentals, its Reach, and Challenges
 
PART 3. CATALYST OPTIMIZATION AND DISCOVERY WITH MACHINE LEARNING
6) Optimization of Catalysts using Computational Chemistry, Machine Learning, and Cheminformatics
7) Predicting Reactivity with Machine Learning
8) Predicting Selectivity in Asymmetric Catalysis with Machine Learning
9) Artificial Intelligence-assisted Heterogeneous Catalyst Design, Discovery, and Synthesis Utilizing Experimental Data

Info autore










Valentine P. Ananikov is a Professor and Laboratory Head at the Zelinsky Institute of Organic Chemistry at the Russian Academy of Sciences in Moscow, Russia. His research interests are focused on the development of new concepts in transition metal and nanoparticle catalysis, sustainable organic synthesis, and new methodologies for mechanistic studies of complex chemical transformations.
Mikhail V. Polynski is a Senior Research Fellow at the National University of Singapore. His current research focuses on the automation of computational chemistry, machine learning for chemical applications, Born-Oppenheimer molecular dynamics modeling, and the theory of catalysis.


Riassunto

Aimed at enhancing catalyst design and optimizing chemical processes by using machine learning techniques, the book is a must-have for researchers in academia and industry interested in developing new catalysts, improving organic synthesis, and minimizing waste and energy use.

Dettagli sul prodotto

Con la collaborazione di Valentine P. Ananikov (Editore), Valentine P Ananikov (Editore), Mikhail V. Polynski (Editore), V Polynski (Editore)
Editore Wiley-VCH
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.09.2025
 
EAN 9783527353859
ISBN 978-3-527-35385-9
Pagine 272
Dimensioni 176 mm x 16 mm x 15 mm
Peso 666 g
Categorie Scienze naturali, medicina, informatica, tecnica > Chimica

Chemie, Informatik, Künstliche Intelligenz, Artificial Intelligence, Katalyse, computer science, chemistry, Catalysis, Industrial Chemistry, Technische u. Industrielle Chemie, Computational Chemistry u. Molecular Modeling, Computational Chemistry & Molecular Modeling

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.