Fr. 102.00

Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XXVIII

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29-October 4, 2024.
The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Sommario

CLIP-Guided Generative Networks for Transferable Targeted Adversarial Attacks.- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering.- Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds.- A New Dataset and Framework for Real-World  Blurred Images Super-Resolution.- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization.- RISurConv: Rotation Invariant Surface Attention-Augmented Convolutions for 3D Point Cloud Classification and Segmentation.- StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models.- Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation.- Preventing Catastrophic Overfitting in Fast Adversarial Training: A Bi-level Optimization Perspective.- Projecting Points to Axes: Oriented Object Detection via Point-Axis Representation.- SeiT++: Masked Token Modeling Improves Storage-efficient Training.- Rectify the Regression Bias in Long-Tailed Object Detection.- MagicEraser: Erasing Any Objects via Semantics-Aware Control.- Reliable Spatial-Temporal Voxels For Multi-Modal Test-Time Adaptation.- Stable Preference: Redefining training paradigm of human preference model for Text-to-Image Synthesis.- SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images.- NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with Diffusion Model.- Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities.- Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers.- Rethinking Tree-Ring Watermarking for Enhanced Multi-Key Identification.- 3D Small Object Detection with Dynamic Spatial Pruning.- STSP: Spatial-Temporal Subspace Projection for Video Class-incremental Learning.- Transferable 3D Adversarial Shape Completion using Diffusion Models.- OmniSat: Self-Supervised Modality Fusion for Earth Observation.- Distilling Diffusion Models into Conditional GANs.- Semantically Guided Representation Learning For Action Anticipation.- MemBN: Robust Test-Time Adaptation via Batch Norm with Statistics Memory.

Dettagli sul prodotto

Con la collaborazione di Ale¿ Leonardis (Editore), Ales Leonardis (Editore), Elisa Ricci (Editore), Stefan Roth (Editore), Olga Russakovsky (Editore), Torsten Sattler (Editore), Gül Varol (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 31.10.2024
 
EAN 9783031733895
ISBN 978-3-0-3173389-5
Pagine 487
Dimensioni 155 mm x 30 mm x 235 mm
Peso 862 g
Illustrazioni LXXXV, 487 p. 170 illus., 167 illus. in color.
Serie Lecture Notes in Computer Science
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Software applicativo

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.