Fr. 112.00

Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part IX

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29-October 4, 2024.
The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Sommario

UniINR: Event-guided Unified Rolling Shutter Correction, Deblurring, and Interpolation.- ReLoo: Reconstructing Humans Dressed in Loose Garments from Monocular Video in the Wild.- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration.- Dataset Growth.- MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References.- Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint.- MoE-DiffIR: Task-customized Diffusion Priors for Universal Compressed Image Restoration.- LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning.- SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant.- Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation.- Listen to Look into the Future: Audio-Visual Egocentric Gaze Anticipation.- R^2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations.- Self-supervised co-salient object detection via feature correspondences at multiple scales.- Differentiable Convex Polyhedra Optimization from Multi-view Images.- SlotLifter: Slot-guided Feature Lifting for Learning Object-Centric Radiance Fields.- SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding.- ADMap: Anti-disturbance Framework for Vectorized HD Map Construction.- GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting.- PanoVOS: Bridging Non-panoramic and Panoramic Views with Transformer for Video Segmentation.- Evaluating Text-to-Visual Generation with Image-to-Text Generation.- SENC: Handling Self-collision in Neural Cloth Simulation.- HybridBooth: Hybrid Prompt Inversion for Efficient Subject-Driven Generation.- PartCraft: Crafting Creative Objects by Parts.- GeometrySticker: Enabling Ownership Claim of Recolorized Neural Radiance Fields.- PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation.- FineMatch: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction.- CrossScore: A Multi-View Approach to Image Evaluation and Scoring.

Dettagli sul prodotto

Con la collaborazione di Ale¿ Leonardis (Editore), Ales Leonardis (Editore), Elisa Ricci (Editore), Stefan Roth (Editore), Stefan Roth et al (Editore), Olga Russakovsky (Editore), Torsten Sattler (Editore), Gül Varol (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 22.10.2024
 
EAN 9783031726729
ISBN 978-3-0-3172672-9
Pagine 513
Dimensioni 155 mm x 32 mm x 235 mm
Peso 897 g
Illustrazioni LXXXV, 513 p. 399 illus., 187 illus. in color.
Serie Lecture Notes in Computer Science
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Software applicativo

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.