Fr. 199.00

Federated Learning Systems - Towards Privacy-Preserving Distributed AI

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book dives deep into both industry implementations and cutting-edge research driving the Federated Learning (FL) landscape forward. FL enables decentralized model training, preserves data privacy, and enhances security without relying on centralized datasets. Industry pioneers like NVIDIA have spearheaded the development of general-purpose FL platforms, revolutionizing how companies harness distributed data. Alternately, for medical AI, FL platforms, such as FedBioMed, enable collaborative model development across healthcare institutions to unlock massive value.
Research advances in PETs highlight ongoing efforts to ensure that FL is robust, secure, and scalable. Looking ahead, federated learning could transform public health by enabling global collaboration on disease prevention while safeguarding individual privacy. From recommendation systems to cybersecurity applications, FL is poised to reshape multiple domains, driving a future where collaboration and privacy coexist seamlessly.

Sommario

Chapter 1.Empowering Federated Learning for Massive Models with NVIDIA FLARE.- Chapter 2.Fed-BioMed: Open, Transparent and Trusted Federated Learning for Real-world Healthcare Applications.- Chapter 3.Client Selection in Federated Learning: Challenges, Strategies, and Contextual Considerations.- Chapter 4.A Review of Secure Gradient Compression Techniques for Federated Learning in the Internet of Medical Things.- Chapter 5.Federated Learning for Recommender Systems: Advances and perspectives.- Chapter 6.The Missing Subject in Health Federated Learning: Preventive and Personalized Care.- Chapter 7.Privacy-Enhancing Technologies for Federated Learning.- Chapter 8.Collaborative Defense: Federated Learning for Intrusion Detection Systems.

Dettagli sul prodotto

Con la collaborazione di Mohamed Medhat Gaber (Editore), Muhammad Habib ur Rehman (Editore), Medhat Gaber (Editore), Muhammad Habib ur Rehman (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 12.02.2025
 
EAN 9783031788406
ISBN 978-3-0-3178840-6
Pagine 165
Illustrazioni XVIII, 165 p. 30 illus., 25 illus. in color.
Serie Studies in Computational Intelligence
Categorie Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Systems, Applications, Algorithms, Artificial Intelligence, Healthcare, Security, Privacy, Computational Intelligence, recommender systems, Federated Learning, Intrusion Detection Systems, Client Selection

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.