Fr. 319.00

Bioelectrochemistry - Fundamentals, Experimental Techniques and Applications

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni

Informationen zum Autor Philip N. Bartlett is Head of the Electrochemistry Section, Deputy Head of Chemistry for Strategy, and Associate Dean for Enterprise in the Faculty of Natural and Environmental Sciences at the University of Southampton. He received his PhD from Imperial College London and was a Lecturer at the University of Warwick and a Professor for Physical Chemistry at the University of Bath, before moving to his current position. His research interests include bioelectrochemistry, nanostructured materials, and chemical sensors. Klappentext Bioelectrochemistry is the study and application of biological electron transfer processes. Over the last 25 years we have learnt some of the important factors which control the interaction between biological redox partners, including how to apply this knowledge and to start to design electrode surfaces, through deliberate chemical modification, so that the biological molecules will interact in a productive way with the electrode surface and facilitate efficient electron transfer. Over the same period significant parallel developments in physical electrochemistry have meant that the tools and techniques, such as in situ infrared spectroscopy, SERS, EQCM, STM and AFM, now exist to study the electrode solution interface at the molecular level. These techniques are now being used to characterise chemically modified electrode surfaces and to study their interaction with biological molecules. Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications , covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of bioelectrochemistry including amperometric biosensors, in vivo applications and bioelectrosynthesis. This volume provides a modern view of the field and is appropriate for graduate students and final year undergraduate students in chemistry and biochemistry as well as researchers in related disciplines including biology, physics, physiology and pharmacology. Zusammenfassung This two-volume work provides a modern view of the field of bioelectrochemistry. Volume 1 deals with fundamental aspects of the chemistry! physics and biology! which underlie the subject area. Inhaltsverzeichnis List of Contributors. Preface. 1 Bioenergetics and Biological Electron Transport (Philip N. Bartlett). 1.1 Introduction. 1.2 Biological Cells. 1.3 Chemiosmosis. 1.3.1 The Proton Motive Force. 1.3.2 The Synthesis of ATP. 1.4 Electron Transport Chains. 1.4.1 The Mitochondrion. 1.4.2 The NADH-CoQ Reductase Complex. 1.4.3 The Succinate-CoQ Reductase Complex. 1.4.4 The CoQH2-Cyt c Reductase Complex. 1.4.5 The Cyt c Oxidase Complex. 1.4.6 Electron Transport Chains in Bacteria. 1.4.7 Electron Transfer in Photosynthesis. 1.4.8 Photosystem II. 1.4.9 Cytochrome bf Complex. 1.4.10 Photosystem I. 1.4.11 Bacterial Photosynthesis. 1.5 Redox Components. 1.5.1 Quinones. 1.5.2 Flavins. 1.5.3 NAD(P)H. 1.5.4 Hemes. 1.5.5 Iron-Sulfur Clusters. 1.5.6 Copper Centres. 1.6 Governing Principles. 1.6.1 Spatial Separation. 1.6.2 Energetics: Redox Potentials. 1.6.3 Kinetics: Electron Transfer Rate Constants. 1.6.4 Size of Proteins. 1.6.5 One-Electron and Two-Electron Couples. 1.7 ATP Synthase. 1.8 Conclusion. References. 2 Electrochemistry of Redox Enzymes (James F. Rusling, Bingquan Wang and Sei-eok Yun). 2.1 Introduction. 2.1.1 Historical Perspective. 2.1.2 Examples of Soluble Mediators. 2.1.3 Development of Protein-Film Voltammetry and Direct Enzyme Electrochemist...

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.