Fr. 196.00

Supervised Learning - Mathematical Foundations and Real-World Applications

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










This book discusses the relevance of probabilistic supervised learning, to the pursuit of automated and reliable prediction of an unknown that is in a state of relationship with another variable. This book is valuable for students across disciplines, including students of computational sciences, statistics, and mathematics.


Sommario










Foreword Preface Acknowledgements 1. Inter-variable relationships 2. Bayesianism 3. Supervised learning & prediction, using Gaussian
Processes 4. Covariance kernels suitable for real-world data 5. Learning a high-dimensional function 6. A self-assembled prior on correlation matrices Bibliography Index


Info autore










Dr. Dalia Chakrabarty is a Reader in Statistical Data Science in the Department of Mathematics at the University of York. Her PhD is from St. Cross College in the University of Oxford, and she works on the development of methods to permit the probabilistic learning of random variables of various kinds, given real world data that is diversely challenging.


Riassunto

This book discusses the relevance of probabilistic supervised learning, to the pursuit of automated and reliable prediction of an unknown that is in a state of relationship with another variable. This book is valuable for students across disciplines, including students of computational sciences, statistics, and mathematics.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.