Fr. 189.00

Top Quark Spin Correlations with the CMS Detector

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

The differential top quark precision measurements of polarizations and spin correlations presented in this dissertation may potentially lead to breakthroughs in several key areas: observing quantum entanglement and Bell's Inequality violations in a hadronic system, discovering toponium, illuminating supersymmetry, interpreting field theories beyond the Standard Model, and advancing the understanding of electroweak vacuum stability.
Additionally, this thesis provides a significantly improved understanding of CMS detector lepton trigger efficiencies, which has greatly enhanced the search for Lorentz invariance violation in top quark events, boosting the sensitivity by greater than a factor of 100.
Finally, the thesis includes TCAD simulations that explore the feasibility of using the initial transient induced current, as described by the Ramo-Shockley Theorem, to achieve the picosecond timing precision in silicon pixel detectors needed for four-dimensional tracking.

Sommario

1 Motivation and Theoretical Overview.- 2 The Compact Muon Experiment at the Large Hadron Collider.- 3 Top Quark Physics at the Large Hadron Collider.- 4 Monte Carlo Event Simulation.- 5 Datasets, Event Selection, and t¯t Kinematic Reconstruction.- 6 Measurements of Differential Cross-Sections.- 7 Results.- 8 Summary and Outlook.1 Motivation and Theoretical Overview.- 2 The Compact Muon Experiment at the Large Hadron Collider.- 3 Top Quark Physics at the Large Hadron Collider.- 4 Monte Carlo Event Simulation.- 5 Datasets, Event Selection, and t¯t Kinematic Reconstruction.- 6 Measurements of Differential Cross-Sections.- 7 Results.- 8 Summary and Outlook.

Info autore

Jason is deeply passionate about the elementary interactions between matter and energy and their application in sensor and technology development. During his Ph.D. work on Large Hadron Collider experiments, he focused on precision measurements of top quark properties and simulating and testing prototype silicon detectors in radiation environments. Currently, as a physicist and systems engineer, Jason is developing new, advanced methods for testing single event effects in 3D heterogeneously integrated electronic components and circuits. He aims to revolutionize the design process for radiation-hardened electronics, facilitating the rapid deployment of next-generation technologies for space and other applications.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.