Fr. 110.00

Ensemble Methods - Foundations and Algorithms

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










Ensemble methods that train multiple learners and then combine them to use, with \textit{Boosting} and \textit{Bagging} as representatives, are well-known machine learning approaches. An ensemble is significantly more accurate than a single learner, and ensemble methods have already achieved great success in various real-world tasks.


Sommario

Preface Notations 1. Introduction 2. Boosting 3. Bagging 4. Combination Methods 5. Diversity 6. Ensemble Pruning 7. Clustering Ensemble 8. Anomaly Detection and Isolation Forest 9. Semi-Supervised Ensemble 10. Class-Imbalance and Cost-Sensitive Ensemble 11. Deep Learning and Deep Forest 12. Advanced Topics References Index

Info autore

Zhi-Hua Zhou, Professor of Computer Science and Artificial Intelligence at Nanjing University, President of IJCAI trustee, Fellow of the ACM, AAAI, AAAS, IEEE, recipient of the IEEE Computer Society Edward J. McCluskey Technical Achievement Award, CCF-ACM Artificial Intelligence Award.

Riassunto

Ensemble methods that train multiple learners and then combine them to use, with \textit{Boosting} and \textit{Bagging} as representatives, are well-known machine learning approaches. An ensemble is significantly more accurate than a single learner, and ensemble methods have already achieved great success in various real-world tasks.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.