Fr. 76.00

Current Applications of Deep Learning in Cancer Diagnostics

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










This book demonstrates the core concepts of deep learning algorithms that, using diagrams, data tables, and examples, are especially useful for deep learning based human cancer diagnostics.


Sommario










1. Contemporary Trends in the Early Detection and Diagnosis of Human Cancers Using Deep Learning Techniques, 2. Cancer Data Pre-Processing Techniques, 3. A Survey on Deep Learning Techniques for Breast, Leukemia and Cervical Cancer Prediction, 4. An Optimized Deep Learning Technique for Detecting Lung Cancer from CT Images, 5. Brain Tumor Segmentation Utilizing MRI Multimodal Images with Deep Learning, 6. Detection and Classification of Brain Tumors Using Light-Weight Convolutional Neural Network, 7. Parallel Dense Skip Connected CNN Approach for Brain Tumor Classification, 8. Liver Tumor Segmentation Using Deep Learning Neural Networks, 9. Deep Learning Algorithms for Classification and Prediction of Acute Lymphoblastic Leukemia, 10. Cervical Pap Smear Screening and Cancer Detection Using Deep Neural Network, 11. Cancer Detection Using Deep Neural Network: Differentiation of Squamous Carcinoma Cells in Oral Pathology, 12. Challenges and Future Scopes in Current Applications of Deep Learning in Human Cancer Diagnostics


Info autore










Jyotismita Chaki, PhD, is an Associate Professor at School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.
Aysegul Ucar, PhD, is a Professor in Department of Mechatronics Engineering, Firat University, Turkey.


Riassunto

This book demonstrates the core concepts of deep learning algorithms that, using diagrams, data tables, and examples, are especially useful for deep learning based human cancer diagnostics.

Dettagli sul prodotto

Con la collaborazione di Jyotismita Chaki (Editore), Aysegul Ucar (Editore)
Editore Taylor and Francis
 
Lingue Inglese
Formato Tascabile
Pubblicazione 09.10.2024
 
EAN 9781032223193
ISBN 978-1-032-22319-3
Pagine 167
Peso 340 g
Illustrazioni schwarz-weiss Illustrationen, farbige Illustrationen, Raster,schwarz-weiss, Raster, farbig, Zeichnungen, schwarz-weiss, Zeichnungen, farbig, Tabellen, schwarz-weiss
Categorie Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

machine learning, Data Mining, Robotics, COMPUTERS / Computer Science, SCIENCE / Biotechnology, MEDICAL / Diagnostic Imaging / General, TECHNOLOGY & ENGINEERING / Robotics, COMPUTERS / Programming / Games, TECHNOLOGY & ENGINEERING / Biomedical, COMPUTERS / Machine Theory, computer science, COMPUTERS / Optical Data Processing, biotechnology, Oncology, Systems analysis & design, Mathematical theory of computation, Medical imaging, Biomedical engineering, Image processing, Games development & programming, GAMES & ACTIVITIES / Video & Mobile, Computer games / online games: strategy guides, Games development and programming, COMPUTERS / Data Science / Machine Learning, MEDICAL / Oncology / General, COMPUTERS / Data Science / Data Visualization, Systems analysis and design, COMPUTERS / Data Science / Data Analytics, COMPUTERS / Data Science / Neural Networks, COMPUTERS / Database Administration & Management, Data capture and analysis, Data Capture & Analysis, Neural networks and fuzzy systems, Neural networks & fuzzy systems

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.