Fr. 103.00

Advanced Network Technologies and Intelligent Computing - Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part IV

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The 4-volume proceedings set CCIS 2090, 2091,2092 and 2093 constitute the refereed post-conference proceedings of the Third International Conference on Advanced Network Technologies and Intelligent Computing, ANTIC 2023, held in Varanasi, India, during December 20-22, 2023.
The 87 full papers and 11 short papers included in this book were carefully reviewed and selected from 487 submissions. The conference papers are organized in topical sections on: 
Part I - Advanced Network Technologies.
Part II - Advanced Network Technologies; Intelligent Computing.
Part III - IV - Intelligent Computing.
 

Sommario

.- Intelligent Computing. 
.- Neural Network Approach for Early detection of Sugarcane Diseases.
.- Enhanced Residual Network Framework for Robust Classification of Noisy Lung Cancer CT Images.
.- Single-Cell Drug Perturbation Prediction Using Machine Learning.
.- Underwater Image Enhancement using Convolutional Neural Network and the MultiUnet Model.
.- A hybrid time series model for the spatio-temporal analysis of air pollution prediction based on PM2.5.
.- Detection of Lung Diseases Using Deep Transfer Learning-Based Convolution Neural Networks.
.- DG-GAN: A Deep Neural Network for Real-World Anomaly Detection in Surveillance Videos.
.- Auto-LVEF: A novel method to determine Ejection Fraction from 2D echocardiograms.
.- Phishing Detection in Browser-In-The-Middle: A Novel Empirical Approach Incorporating Machine Learning Algorithms.
.- Feature Engineering for Predicting Consumer Purchase Behavior: A Comprehensive Analysis.
.- Enhanced Simulation of Collision Events Using Quantum GANs for Jet Images Generation.
.- Class imbalance learning using Fuzzy SVM with Fuzzy Weighted Gaussian Kernel.
.- Material Handling Cost (MHC) Minimization through Facility Layout Design (FLD) Using Genetic Algorithm (GA) combined with the Particle Swarm Optimization (PSO) Method.
.- Detecting ADHD among children using EEG signals.
.- Enhancing Skin Cancer Classification with Ensemble Models.
.- Efficient real-time Sign Detection for Autonomous Vehical in Hazy environment using Deep Learning Models.
.- Kannada Continuous Speech Recognition using Deep Learning.
.- A new type of classification algorithm inspired by the chromatographic separation mechanism.
.- Comparative Analysis of ELM and Sparse Bayesian ELM for Healthcare Diagnosis.
.- Integration of Generative AI and Deep Tabular Data Learning Architecture for Heart Attack Prediction.
.- Navigating the Domain Shift: Object Detection in Indian Road Datasets with Limited Data.
.- An Efficient Hybrid Algorithm with Novel Inver-over Operator and Ant Colony Optimization for Traveling Salesman Problem.
.- Sparsity Analysis of New Biased Pearson Similarity Measure for Memory Based Collaborative Filtering.
.- Advancing Medical Predictive Models with Integrated Approaches.

Info autore











Dettagli sul prodotto

Con la collaborazione di Sanjay Kumar Dhurandher (Editore), Kiran Kumar Pattanaik (Editore), Anshul Verma (Editore), Pradeepika Verma (Editore), Isaac Woungang (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 26.07.2024
 
EAN 9783031640667
ISBN 978-3-0-3164066-7
Pagine 382
Dimensioni 155 mm x 21 mm x 235 mm
Peso 610 g
Illustrazioni XXI, 382 p. 193 illus., 153 illus. in color.
Serie Communications in Computer and Information Science
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Hardware

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.