Fr. 178.00

Construct, Merge, Solve & Adapt - A Hybrid Metaheuristic for Combinatorial Optimization

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.
Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.
The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.

Sommario

Introduction to CMSA.- Self-Adaptive CMSA.- Adding Learning to CMSA.- Replacing Hard Mathematical Models with Set Covering Formulations.- Application of CMSA in the Presence of Non-Binary Variables.- Additional Research Lines Concerning CMSA.

Dettagli sul prodotto

Autori Christian Blum
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 19.06.2024
 
EAN 9783031601026
ISBN 978-3-0-3160102-6
Pagine 192
Dimensioni 155 mm x 15 mm x 235 mm
Peso 426 g
Illustrazioni XVI, 192 p. 58 illus., 43 illus. in color.
Serie Computational Intelligence Methods and Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.