Fr. 77.00

Introduction to Combinatorial Torsions - Notes taken by Felix Schlenk

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.

Sommario

I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.- 6 The Reidemeister-Franz torsion.- 7 The Whitehead torsion.- 8 Simple homotopy equivalences.- 9 Reidemeister torsions and homotopy equivalences.- 10 The torsion of lens spaces.- 11 Milnor's torsion and Alexander's function.- 12 Group rings of finitely generated abelian groups.- 13 The maximal abelian torsion.- 14 Torsions of manifolds.- 15 Links.- 16 The Fox Differential Calculus.- 17 Computing ?(M3) from the Alexander polynomial of links.- III Refined Torsions.- 18 The sign-refined torsion.- 19 The Conway link function.- 20 Euler structures.- 21 Torsion versus Seiberg-Witten invariants.- References.

Testo aggiuntivo

"[The book] contains much of the needed background material in topology and algebra…Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Relazione

"[The book] contains much of the needed background material in topology and algebra...Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Dettagli sul prodotto

Autori Vladimir Turaev, Vladimir G. Turaev
Editore Springer, Basel
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2001
 
EAN 9783764364038
ISBN 978-3-7643-6403-8
Pagine 124
Peso 260 g
Illustrazioni VIII, 124 p. 13 illus.
Serie Lectures in Mathematics
Lectures in Mathematics. ETH Zürich
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

C, Addition, Function, Construction, geometry, Homology, Torsion, Variable, Group, Mathematics and Statistics, Manifold, Algebraic Topology, Maximum, homotopy, Reidemeister torsion

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.